Researcher: Çetin, Sultan
Name Variants
Çetin, Sultan
Email Address
Birth Date
6 results
Search Results
Now showing 1 - 6 of 6
Publication Metadata only Selective monitoring and treatment of neuroblastoma cells with hydrogen sulfide activatable phototheranostic agent(Elsevier, 2023) Kepil, Dilay; Elmazoglu, Zubeyir; Ozogul, Naz; Gunbas, Gorkem; N/A; Department of Chemistry; N/A; Department of Chemistry; Dırak, Musa; Almammadov, Toghrul; Çetin, Sultan; Kölemen, Safacan; PhD Student; Researcher; PhD Student; Faculty Member; Department of Chemistry; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Sciences; Graduate School of Sciences and Engineering; College of Sciences; N/A; N/A; N/A; 272051Activity-based photosensitizers (aPSs) are highly attractive as they offer improved selectivity and better therapeutic outcome in the scope of photodynamic therapy (PDT). Here, a hydrogen sulfide (H2S) responsive iodinated resorufin-based PS (RHS) was developed to treat neuroblastoma cancer cells selectively. RHS was shown to be a phototheranostic agent as it turned on its fluorescence signal and singlet oxygen (O-1(2)) generation capability after reacting with H2S. RHS exhibited remarkable sensitivity towards H2S and proved to be highly cytotoxic in H2S rich SH-SY5Y human neuroblastoma cells upon light irradiation. In contrast, no photocytotoxicity was observed in H2S deficient nonmalignant fibroblast L929 cells. RHS marks the first example of a resorufin-based H2S activatable photo-theranostic agent, which paves the way for effective treatment of neuroblastoma through PDT modality.Publication Metadata only Directing chemiluminescent dioxetanes to mitochondria: a cationic luminophore enables in vitro and in vivo detection of cancer cells upon enzymatic activation(Elsevier B.V., 2023) Department of Chemistry; N/A; N/A; Department of Chemistry; N/A; N/A; N/A; N/A; N/A; Department of Chemistry; Gündüz, Hande; Acari, Alperen; Çetin, Sultan; Almammadov, Toghrul; Değirmenci, Nareg Pınarbaşı; Dırak, Musa; Cingöz, Ahmet; Kılıç, Eda; Önder, Tuğba Bağcı; Kölemen, Safacan; Researcher; Master Student; PhD Student; Researcher; PhD Student; PhD Student; Researcher; Master Student; Faculty Member; Faculty Member; Department of Chemistry; N/A; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); N/A; N/A; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); N/A; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); N/A; N/A; N/A; College of Sciences; Graduate School of Health Sciences; Graduate School of Sciences and Engineering; College of Sciences; Graduate School of Health Sciences; Graduate School of Sciences and Engineering; N/A; Graduate School of Sciences and Engineering; School of Medicine; College of Sciences; 224496; N/A; N/A; N/A; N/A; N/A; N/A; N/A; 184359; 272051A mitochondrion targeted and leucine aminopeptidase (LAP) activatable 1,2-dioxatane based chemiluminescent probe (MCL) for detection of LAP activity in living cancer cells and tumor bearing mice was reported. MCL displayed a selective and sensitive turn-on response in aqueous solutions upon reacting with the LAP enzyme. In cell culture studies, a selective luminescence intensity increase was observed in cancer cell lines, suggesting that MCL can differentiate between cancer and normal cells and allows detection of varying endogenous LAP concentrations. Using fluorescence imaging with a commercial Mitotracker dye, MCL was also shown to localize mitochondria in cancer cell lines. Furthermore, MCL was used to image tumors in mice models. MCL marks not only the first ever example of a mitochondria targeted chemiluminescent probe, but also the first ever example of an organelle targeted 1,2-dioxetane derivative. © 2023 Elsevier B.V.Publication Metadata only Dual laser activatable brominated hemicyanine as a highly efficient and photostable multimodal phototherapy agent(Elsevier Science Sa, 2021) Department of Chemistry; N/A; N/A; N/A; Department of Physics; Department of Chemistry; Department of Chemistry; Gündüz, Hande; Bilici, Kübra; Çetin, Sultan; Muti, Abdullah; Sennaroğlu, Alphan; Acar, Havva Funda Yağcı; Kölemen, Safacan; Researcher; PhD Student; PhD Student; PhD Student; Faculty Member; Faculty Member; Faculty Member; Department of Physics; Department of Chemistry; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Koç University Boron and Advanced Materials Application and Research Center (KUBAM) / Koç Üniversitesi Bor ve İleri Malzemeler Uygulama ve Araştırma Merkezi (KUBAM); Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); College of Sciences; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Sciences; College of Sciences; College of Sciences; 224496; N/A; N/A; N/A; 23851; 178902; 272051Dual phototherapy agents have attracted great interest in recent years as they offer enhanced cytotoxicity on cancer cells due to the synergistic effect of photodynamic and photothermal therapies (PDT/PTT). In this study, we demonstrate a brominated hemicyanine (HC-1), which is previously shown as mitochondria targeting PDT agent, can also serve as an effective photosensitizer for PTT for the first time under a single (640 nm or 808 nm) and dual laser (640 nm + 808 nm) irradiation. Generation of reactive oxygen species and photothermal conversion as a function of irradiation wavelength and power were studied. Both single wavelength irradiations caused significant phototoxicity in colon and cervical cancer cells after 5 min of irradiation. However, coirradiation provided near-complete elimination of cancer cells due to synergistic action. This work introduces an easily accessible small molecule-based synergistic phototherapy agent, which holds a great promise towards the realization of local, rapid and highly efficient treatment modalities against cancer.Publication Metadata only A facile synthesis of mesoporous graphitic carbon nitride supported palladium nanoparticles as highly effective and reusable catalysts for Stille coupling reactions under mild conditions(Royal Soc Chemistry, 2020) N/A; Department of Chemistry; N/A; Department of Chemistry; Department of Chemistry; Kalay, Erbay; Çetin, Sultan; Kölemen, Safacan; Metin, Önder; Researcher; PhD Student; Faculty Member; Faculty Member; Department of Chemistry; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Sciences; Graduate School of Sciences and Engineering; College of Sciences; College of Sciences; 59456; N/A; 272051; 46962The development of a Stille coupling protocol that is operable under moderate conditions without using a base is highly required for the synthetic organic chemistry community, which requires an efficient nanocatalyst. In this respect, addressed herein is a facile one-pot synthesis of mesoporous graphitic carbon nitride (mpg-CN) supported Pd NPs, denoted as mpg-CN/Pd hereafter, and investigation of their catalytic activity in Stille cross-coupling reactions for the first time. It has been demonstrated that mpg-CN nanosheets can serve as not only a support material but also a stabilizer for the generation of 4.5 nm Pd NPs. The ecofriendly generated heterogeneous nanocatalyst was characterized by TEM, XRD, XPS, BET surface area and ICP-MS analysis. The mpg-CN/Pd nanocatalysts showed high activity in the Stille coupling reaction of a variety of electron-deficient and electron-rich aryl iodides/bromides and two different organostannanes with a wide substrate scope to afford the corresponding biaryls without using any bases and additional ligands under relatively mild conditions. The catalyst can be easily recovered from the reaction medium by centrifugation. It can be reused at least 5 times without any loss of activity.Publication Open Access Balanced intersystem crossing in iodinated silicon-fluoresceins allows new class of red shifted theranostic agents(American Chemical Society (ACS), 2021) Elmazoğlu, Zübeyir; Karaman, Osman; Günbaş, Görkem; Department of Chemistry; Çetin, Sultan; Kölemen, Safacan; Gündüz, Hande; PhD Student; Faculty Member; Researcher; Department of Chemistry; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Boron and Advanced Materials Application and Research Center (KUBAM) / Koç Üniversitesi Bor ve İleri Malzemeler Uygulama ve Araştırma Merkezi (KUBAM); Graduate School of Sciences and Engineering; College of Sciences; N/A; 272051; N/AIodination of the silicon-fluorescein core revealed a new class of highly cytotoxic, red-shifted and water-soluble photosensitizer (SF-I) which is also fairly emissive to serve as a theranostic agent. Singlet oxygen generation capacity of SF-I was evaluated chemically, and up to 45% singlet oxygen quantum yield was reported in aqueous solutions. SF-I was further tested in triple negative breast (MDA MB-231) and colon (HCT-116) cancer cell lines, which are known to have limited chemotherapy options as well as very poor prognosis. SF-I induced efficient singlet oxygen generation and consequent photocytotoxicity in both cell lines upon light irradiation with a negligible dark toxicity while allowing cell imaging at the same time. SF-I marks the first ever example of a silicon xanthene-based photosensitizer and holds a lot of promise as a small-molecule-based theranostic scaffold.Publication Open Access Recent advances in cyanine-based phototherapy agents(Frontiers, 2021) N/A; Department of Chemistry; Bilici, Kübra; Çetin, Sultan; Çelikbaş, Eda; Acar, Havva Funda Yağcı; Kölemen, Safacan; PhD Student; Faculty Member; Department of Chemistry; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Boron and Advanced Materials Application and Research Center (KUBAM) / Koç Üniversitesi Bor ve İleri Malzemeler Uygulama ve Araştırma Merkezi (KUBAM); Graduate School of Sciences and Engineering; College of Sciences; N/A; N/A; N/A; 178902; 272051Phototherapies, in the form of photodynamic therapy (PDT) and photothermal therapy (PTT), are very promising treatment modalities for cancer since they provide locality and turn-on mechanism for toxicity, both of which are critical in reducing off-site toxicity. Irradiation of photosensitive agents demonstrated successful therapeutic outcomes; however, each approach has its limitations and needs to be improved for clinical success. The combination of PTT and PDT may work in a synergistic way to overcome the limitations of each method and indeed improve the treatment efficacy. The development of single photosensitive agents capable of inducing both PDT and PTT is, therefore, extremely advantageous and highly desired. Cyanine dyes are shown to have such potential, hence have been very popular in the recent years. Luminescence of cyanine dyes renders them as phototheranostic molecules, reporting the localization of the photosensitive agent prior to irradiation to induce phototoxicity, hence allowing image-guided phototherapy. In this review, we mainly focus on the cyanine dye-based phototherapy of different cancer cells, concentrating on the advancements achieved in the last ten years.