Researcher:
Şanal, Erdem

Loading...
Profile Picture
ORCID

Job Title

PhD Student

First Name

Erdem

Last Name

Şanal

Name

Name Variants

Şanal, Erdem

Email Address

Birth Date

Search Results

Now showing 1 - 5 of 5
  • Placeholder
    Publication
    Phosphoproteomic analysis of aurora kinase inhibition in monopolar cytokinesis
    (Amer Chemical Soc, 2015) Giese, Sven H.; Hu, Chi-Kuo; Renard, Bernhard Y.; N/A; N/A; N/A; N/A; Department of Molecular Biology and Genetics; Köken, Ayşe Nur Polat; Karayel, Özge; Harmanda, Büşra; Şanal, Erdem; Master Student; Master Student; Researcher; Master Student; Faculty Member; Department of Molecular Biology and Genetics; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Sciences; 239008; N/A; N/A; N/A; 105301
    Cytokinesis is the last step of the cell cycle that requires coordinated activities of the microtubule c-ytoskeleton, actin cytoskeleton, and membrane compartments. Aurora B kinase is one of the master regulatory kinases that orchestrate multiple events during cytokinesis. To reveal targets of the Aurora B kinase, we combined quantitative mass spectrometry with chemical genetics. Using the quantitative proteomic approach, SILAC (stable isotope labeling with amino acids in cell culture), we analyzed the phosphoproteome of monopolar cytokinesis upon VX680- or AZD1152-mediated aurora kinase inhibition. In total, our analysis quantified over 20 000 phosphopeptides in response to the Aurora-B kinase inhibition; 246 unique phosphopeptides were significantly down-regulated and 74 were up-regulated. Our data provide a broad analysis of downstream effectors of Aurora kinase and offer insights into how Aurora kinase regulates cytokinesis.
  • Placeholder
    Publication
    Labeling carboxyl groups of surface-exposed proteins provides an orthogonal approach for cell surface isolation
    (Amer Chemical Soc, 2018) Tan, Edwin; Mitchison, Timothy; N/A; N/A; Department of Molecular Biology and Genetics; Küçük, Nazlı Ezgi Özkan; Şanal, Erdem; Researcher; PhD Student; Faculty Member; Department of Molecular Biology and Genetics; N/A; Graduate School of Sciences and Engineering; College of Sciences; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); N/A; N/A; 105301
    Quantitative profiling of cell surface proteins is critically important for the understanding of cell-cell communication, signaling, tissue development, and homeostasis. Traditional proteomics methods are challenging for cell surface proteins due to their hydrophobic nature and low abundance, necessitating alternative methods to efficiently identify and quantify this protein group. Here we established carboxyl reactive biotinylation for selective and efficient biotinylation and isolation of surface-exposed proteins of living cells. We assessed the efficiency of carboxyl-reactive biotinylation for plasma membrane proteins by comparing it with a well-established protocol, amine-reactive biotinylation, using SILAC (stable isotope labeling in cell culture). Our results show that carboxyl-reactive biotinylation of cell surface proteins is both more selective and more efficient than amine-reactive biotinylation. We conclude that it is a useful approach, which is partially orthogonal to amine-reactive biotinylation, allowing us to cast a wider net for a comprehensive profiling of cell surface proteins.
  • Placeholder
    Publication
    Systems-level analysis reveals multiple modulators of epithelial-mesenchymal transition and identifies DNAJB4 and CD81 as novel metastasis inducers in breast cancer
    (American Society Biochemistry Molecular Biology, 2019) Saatci, Ozge; Ersan, Pelin Gulizar; Trappe, Kathrin; Renard, Bernhard Y.; Tuncbag, Nurcan; Sahin, Ozgur; Department of Molecular Biology and Genetics; N/A; N/A; Önder, Tamer Tevfik; Kagiali, Zeynep Cansu Üretmen; Şanal, Erdem; Karayel, Özge; Köken, Ayşe Nur Polat; Sıcakkan, Nurhan Özlü; Faculty Member; Faculty Member; PhD Student; PhD Student; Master Student; Master Student; Department of Molecular Biology and Genetics; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); College of Sciences; School of Medicine; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; 105301; 42946; N/A; N/A; N/A; N/A
    Epithelial-mesenchymal transition (EMT) is driven by complex signaling events that induce dramatic biochemical and morphological changes whereby epithelial cells are converted into cancer cells. However, the underlying molecular mechanisms remain elusive. Here, we used mass spectrometry based quantitative proteomics approach to systematically analyze the post-translational biochemical changes that drive differentiation of human mammary epithelial (HMLE) cells into mesenchymal. We identified 314 proteins out of more than 6,000 unique proteins and 871 phosphopeptides out of more than 7,000 unique phosphopeptides as differentially regulated. We found that phosphoproteome is more unstable and prone to changes during EMT compared with the proteome and multiple alterations at proteome level are not thoroughly represented by transcriptional data highlighting the necessity of proteome level analysis. We discovered cell state specific signaling pathways, such as Hippo, sphingolipid signaling, and unfolded protein response (UPR) by modeling the networks of regulated proteins and potential kinase-substrate groups. We identified two novel factors for EMT whose expression increased on EMT induction: DnaJ heat shock protein family (Hsp40) member B4 (DNAJB4) and cluster of differentiation 81 (CD81). Suppression of DNAJB4 or CD81 in mesenchymal breast cancer cells resulted in decreased cell migration in vitro and led to reduced primary tumor growth, extravasation, and lung metastasis in vivo. Overall, we performed the global proteomic and phosphoproteomic analyses of EMT, identified and validated new mRNA and/ or protein level modulators of EMT. This work also provides a unique platform and resource for future studies focusing on metastasis and drug resistance.
  • Thumbnail Image
    PublicationOpen Access
    CLIC4 and CLIC1 bridge plasma membrane and cortical actin network for a successful cytokinesis
    (Life Science Alliance LLC, 2020) Department of Molecular Biology and Genetics; Kagiali, Zeynep Cansu Üretmen; Şanal, Erdem; Değirmenci, Beste Senem; Mollaoğlu, Gürkan; Saner, Nazan; Master Student; Faculty Member; Researcher; Department of Molecular Biology and Genetics; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Sciences and Engineering; College of Sciences; N/A; N/A; N/A; N/A; 105301; 227757
    CLIC4 and CLIC1 are members of the well-conserved chloride intracellular channel proteins (CLICs) structurally related to glutathione-S-transferases. Here, we report new roles of CLICs in cytokinesis. At the onset of cytokinesis, CLIC4 accumulates at the cleavage furrow and later localizes to the midbody in a RhoA-dependent manner. The cell cycle-dependent localization of CLIC4 is abolished when its glutathione S-transferase activity-related residues (C35A and F37D) are mutated. Ezrin, anillin, and ALIX are identified as interaction partners of CLIC4 at the cleavage furrow and midbody. Strikingly, CLIC4 facilitates the activation of ezrin at the cleavage furrow and reciprocally inhibition of ezrin activation diminishes the translocation of CLIC4 to the cleavage furrow. Furthermore, knockouts of CLIC4 and CLIC1 cause abnormal blebbing at the polar cortex and regression of the cleavage furrow at late cytokinesis leading to multinucleated cells. We conclude that CLIC4 and CLIC1 function together with ezrin where they bridge plasma membrane and actin cytoskeleton at the polar cortex and cleavage furrow to promote cortical stability and successful completion of cytokinesis in mammalian cells.
  • Thumbnail Image
    PublicationOpen Access
    Comparative phosphoproteomic analysis reveals signaling networks regulating monopolar and bipolar cytokinesis
    (Nature Publishing Group (NPG), 2018) Department of Molecular Biology and Genetics; Karayel, Özge; Şanal, Erdem; Kagiali, Zeynep Cansu Üretmen; Köken, Ayşe Nur Polat; Faculty Member; Department of Molecular Biology and Genetics; Graduate School of Sciences and Engineering; N/A; N/A; N/A; N/A; 105301
    The successful completion of cytokinesis requires the coordinated activities of diverse cellular components including membranes, cytoskeletal elements and chromosomes that together form partly redundant pathways, depending on the cell type. The biochemical analysis of this process is challenging due to its dynamic and rapid nature. Here, we systematically compared monopolar and bipolar cytokinesis and demonstrated that monopolar cytokinesis is a good surrogate for cytokinesis and it is a well-suited system for global biochemical analysis in mammalian cells. Based on this, we established a phosphoproteomic signature of cytokinesis. More than 10,000 phosphorylation sites were systematically monitored; around 800 of those were up-regulated during cytokinesis. Reconstructing the kinase-substrate interaction network revealed 31 potentially active kinases during cytokinesis. The kinase-substrate network connects proteins between cytoskeleton, membrane and cell cycle machinery. We also found consensus motifs of phosphorylation sites that can serve as biochemical markers specific to cytokinesis. Beyond the kinase-substrate network, our reconstructed signaling network suggests that combination of sumoylation and phosphorylation may regulate monopolar cytokinesis specific signaling pathways. Our analysis provides a systematic approach to the comparison of different cytokinesis types to reveal alternative ways and a global overview, in which conserved genes work together and organize chromatin and cytoplasm during cytokinesis.