Publication:
Modification of the surface plasmon enhanced optical forces on metal nanorod pairs by axial rotation and by dielectric intralayer

Thumbnail Image

Organizational Units

Program

KU Authors

Co-Authors

Advisor

Publication Date

2014

Language

English

Type

Journal Article

Journal Title

Journal ISSN

Volume Title

Abstract

We investigate numerically the effect of axial rotation and the presence of a dielectric intralayer on the spectral behavior of the optical force on a gold nanorod pair. The frequency spectrum of the optical force is obtained through the Maxwell stress tensor formulation and the full vectorial solution of electromagnetic waves. The common and the relative forces, which are defined through the optical force acting on each nanorod, are computed for different axial rotations and for different permittivity and thickness of the dielectric intralayer. We found that both the misalignment and the dielectric intralayer can be utilized to tailor the magnitude and direction of the relative optical force, providing a tunable attractive or repulsive response between the nanorods. (C) 2014 Elsevier B.V. All rights reserved.

Description

Source:

Applied Surface Science

Publisher:

Elsevier

Keywords:

Subject

Physical chemistry, Materials Science

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

0

Downloads

View PlumX Details