Publication:
Global solvability and blow up for the convective Cahn-Hilliard equations with concave potentials

Thumbnail Image

Organizational Units

Program

KU Authors

Co-Authors

Eden, A.
Zelik, S. V.

Advisor

Publication Date

2013

Language

English

Type

Journal Article

Journal Title

Journal ISSN

Volume Title

Abstract

We study initial boundary value problems for the unstable convective Cahn-Hilliard (CH) equation, i.e., the Cahn Hilliard equation whose energy integral is not bounded below. It is well-known that without the convective term, the solutions of the unstable CH equation ?t u + ? 4xu + ?2x(|u|pu) = 0 may blow up in ?nite time for anyp > 0. In contrast to that, we show that the presence of the convective term u?xuin the Cahn-Hilliard equation prevents blow up at least for 0 < p <49. We alsoshow that the blowing up solutions still exist if p is large enough (p ? 2). The related equations like Kolmogorov-Sivashinsky-Spiegel equation, sixth order convective Cahn-Hilliard equation, are also considered.

Description

Source:

Journal of Mathematical Physics

Publisher:

American Institute of Physics (AIP) Publishing

Keywords:

Subject

Mathematical physics

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

2

Downloads

View PlumX Details