Publication:
Dynamical analysis of a weakly coupled nonlinear dielectric waveguide: surface-plasmon model as another type of Josephson junction

Thumbnail Image

Departments

School / College / Institute

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

NO

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

We propose that a weakly coupled nonlinear dielectric waveguide surface-plasmon system can be formulated as another type of Josephson junction. Such a system can be realized along a metal-dielectric interface where the dielectric medium hosts a nonlinear waveguide (e.g., fiber) for soliton propagation. We demonstrate that the system is in close analogy to the bosonic Josephson junction of atomic condensates at very low temperatures, yet exhibits different dynamical features. In particular, the inherently dynamic coupling parameter between soliton and surface plasmon generates self-trapped oscillatory states at nonzero fractional populations with zero and p time-averaged phase difference. The salient features of the dynamics are presented in the phase space.

Source

Publisher

American Physical Society (APS)

Subject

Optics, Physics

Citation

Has Part

Source

Physical Review A

Book Series Title

Edition

DOI

10.1103/PhysRevA.84.033805

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

4

Downloads

View PlumX Details