Publication: Incorporating the grain boundary misorientation effects on slip activity into crystal plasticity
Program
KU Authors
Co-Authors
Advisor
Publication Date
2016
Language
English
Type
Journal Article
Journal Title
Journal ISSN
Volume Title
Abstract
The role of grain boundary misorientation angle (GBMA) distribution on slip activity in a high-manganese austenitic steel was investigated through experiments and simulations. Crystal plasticity simulations incorporating the GBMA distribution and the corresponding dislocation-grain boundary interactions were conducted. The computational analysis revealed that the number of active slip systems decreased when GBMA distribution was taken into account owing to the larger volume of grain boundary-dislocation interactions. The current results demonstrate that the dislocation-grain boundary interactions significantly contribute to the overall hardening, and the GBMA distribution constitutes a key parameter dictating the slip activity.
Description
Source:
Mechanics Of Advanced Materials And Structures
Publisher:
Taylor & Francis Inc
Keywords:
Subject
Materials science, Mechanics, Materials science, Characterization, Testing, Materials science, Composites