Publications without Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/3
Browse
18 results
Search Results
Publication Metadata only Microfluidic pulse shaping methods for molecular communications(Elsevier, 2023) Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Kahvazi Zadeh, Maryam; Bolhassan, Iman Mokari; Kuşcu, Murat; Graduate School of Sciences and Engineering; College of EngineeringMolecular Communication (MC) is a bio-inspired communication modality that utilizes chemical signals in the form of molecules to exchange information between spatially separated entities. Pulse shaping is an important process in all communication systems, as it modifies the waveform of transmitted signals to match the characteristics of the communication channel for reliable and high-speed information transfer. In MC systems, the unconventional architectures of components, such as transmitters and receivers, and the complex, nonlinear, and time-varying nature of MC channels make pulse shaping even more important. While several pulse shaping methods have been theoretically proposed for MC, their practicality and performance are still uncertain. Moreover, the majority of recently proposed experimental MC testbeds that rely on microfluidics technology lack the incorporation of programmable pulse shaping methods, which hinders the accurate evaluation of MC techniques in practical settings. To address the challenges associated with pulse shaping in microfluidic MC systems, we provide a comprehensive overview of practical microfluidic chemical waveform generation techniques that have been experimentally validated and whose architectures can inform the design of pulse shaping methods for microfluidic MC systems and testbeds. These techniques include those based on hydrodynamic and acoustofluidic force fields, as well as electrochemical reactions. We also discuss the fundamental working mechanisms and system architectures of these techniques, and compare their performances in terms of spatiotemporal resolution, selectivity, system complexity, and other performance metrics relevant to MC applications, as well as their feasibility for practical MC applications.Publication Metadata only Stabilization and adiabatic control of antiferromagnetically coupled skyrmions without the topological hall effect(Royal Soc Chemistry, 2023) Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Yağan, Rawana; Cheghabouri, Arash Mousavi; Onbaşlı, Mehmet Cengiz; Graduate School of Sciences and Engineering; College of EngineeringSynthetic antiferromagnetically coupled (SAF) multilayers provide different physics of stabilizing skyrmions while eliminating the topological Hall effect (THE), enabling efficient and stable control. The effects of material parameters, external current drive, and a magnetic field on the skyrmion equilibrium and propagation characteristics are largely unresolved. Here, we present a computational and theoretical demonstration of the large window of material parameters that stabilize SAF skyrmions determined by saturation magnetization, uniaxial anisotropy, and Dzyaloshinskii-Moriya interaction. Current-driven SAF skyrmion velocities reach & SIM;200 m s(-1) without the THE. The SAF velocities are about 3-10 times greater than the typical ferromagnetic skyrmion velocities. The current densities needed for driving SAF skyrmions could be reduced to 10(8) A m(-2), while 10(11) A m(-2) or above is needed for ferromagnetic skyrmions. By reducing the SAF skyrmion drive current by 3 orders, Joule heating is reduced by 6 orders of magnitude. These results pave the way for new SAF interfaces with improved equilibrium, dynamics, and power savings in THE-free skyrmionics.Publication Metadata only Batch fabrication of self-assembled nickel-iron nanowires by electrodeposition(IEEE, 2006) N/A; Department of Electrical and Electronics Engineering; Department of Mechanical Engineering; Department of Electrical and Electronics Engineering; Department of Mechanical Engineering; Şardan, Özlem; Yalçınkaya, Arda Deniz; Alaca, Burhanettin Erdem; Master Student; Researcher; Faculty Member; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; 144523; 115108Lack of batch-compatible fabrication techniques can be considered as the most important challenge in the integration of nanostructures with microelectromechanical systems (MEMS). a solution to the micro-nano integration problem is offered by introducing a batch-compatible nanowire fabrication technique based on basic lithographic techniques and guided self-assembly. the basic principle is obtaining cracks at predetermined locations in a sacrificial SiO2 layer on Si and filling these cracks with a suitable metal by electrodeposition. the technique is demonstrated by using Nickel-Iron as the deposition material and verifying the magnetic behavior of resulting nanowires.Publication Metadata only Rate-delay tradeoff with network coding in molecular nanonetworks(IEEE-Inst Electrical Electronics Engineers Inc, 2013) N/A; N/A; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Ünlütürk, Bige Deniz; Malak, Derya; Akan, Özgür Barış; Master Student; PhD Student; Faculty Member; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 6647Molecular communication is a novel nanoscale communication paradigm, in which information is encoded in messenger molecules for transmission and reception. However, molecular communication is unreliable and has highly varying long propagation delays mainly due to the stochastic behavior of the freely diffusing molecules. Thus, it is essential to analyze its delay characteristics, as well as the tradeoff between the rate and delay, in order to reveal the capabilities and limitations of molecular information transmission in nanonetworks. In this paper, first, a new messenger-based molecular communication model, which includes a nanotransmitter sending information to a nanoreceiver, is introduced. The information is encoded on a polyethylene molecule, CH3(CHX)(n)CH2F, where X stands for H and F atoms representing 0 and 1 bits, respectively. The emission of the molecules is modeled by puffing process which is inspired by the alarm pheromone release by animals in dangerous situations. In this work, the rate-delay characteristics of this messenger-based molecular communication model are explored. Then, a Nano-Relay is inserted in the model, which XOR's the incoming messages from two different nanomachines. Performance evaluation shows that indeed, a simple network coding mechanism significantly improves the rate given delay of the system, and vice versa.Publication Metadata only Understanding the potential of zeolite imidazolate framework membranes in gas separations using atomically detailed calculations(amer Chemical Soc, 2012) N/A; Department of Chemical and Biological Engineering; Department of Chemical and Biological Engineering; Atcı, Erhan; Keskin, Seda; Master Student; Faculty Member; Graduate School of Sciences and Engineering; College of Engineering; N/A; 40548Zeolite imidazolate frameworks (ZIFs) offer considerable potential for gas separation applications due to their tunable pore sizes, large surface areas, high pore volumes, and good thermal and mechanical stabilities. although a significant number of ZIFs has been synthesized in the powder form to date, very little is currently known about the potential performance of ZIFs for membrane-based gas separation applications. in this work, we used atomically detailed calculations to predict the performance of 15 different ZIP materials both in adsorption-based and membrane-based separations of CH4/H-2, CO2/CH4, and CO2/H-2 mixtures. We predicted adsorption-based selectivity, working capacity, membrane-based selectivity, and gas permeability of ZIFs. Our results identified several ZIFs that can outperform traditional zeolite membranes and widely studied metal organic framework membranes in CH4/H-2, CO2/CH4, and CO2/H-2 separation processes. Finally, the accuracy of the mixing theories estimating mixture adsorption and diffusion based on single component data was tested.Publication Metadata only Residual stress gradients in electroplated nickel thin films(Elsevier Science Bv, 2015) N/A; N/A; Department of Chemistry; Department of Mechanical Engineering; Department of Chemistry; Department of Mechanical Engineering; Kılınç, Yasin; Ünal, Uğur; Alaca, Burhanettin Erdem; PhD Student; Faculty Member; Faculty Member; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Sciences; College of Engineering; N/A; 42079; 115108Residual stress gradients in electroplated nickel films of 1 mu m thickness are characterized for a wide range of current densities (1-20 mA/cm(2)) and electroplating temperatures (30-60 degrees C) in a nickel sulfamate bath. Although a variety of stress measurements is available, exploration of stress gradients remain unstudied at the scale of 1 mu m. Stress gradients - unlike uniform stresses - can cause significant bending even in monolayered released structures. Moreover, examples of misinterpretation of wafer curvature data as a measure of stress gradients exist in the literature. Based on these motivations, monolayered Ni microcantilevers are employed in this work as mechanical transducers for the characterization of stress gradients within the nickel film. Experiments are supported with finite element simulations. Residual stress gradient is found to vary in the range of about 130 to 70 MP/mu m with the sign change indicating a transition from downward to upward deflection of the microcantilever. Thus, a window of electroplating parameters is established yielding zero residual stress gradients, i.e. straight cantilevers, without the use of any additive agents.Publication Metadata only Interactions of [BMIM][BF 4] with metal oxides and their consequences on stability limits(Amer Chemical Soc, 2016) N/A; N/A; N/A; Department of Chemical and Biological Engineering; Department of Chemical and Biological Engineering; Babucci, Melike; Balcı, Volkan; Akçay, Aslı; Uzun, Alper; PhD Student; PhD Student; Master Student; Faculty Member; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; N/A; 59917Interactions between 1-n-butyl-3-methylimidazolium tetrafluoroborate, [BMIM][BF4], and high-surface-area metal oxides, SiO2, TiO2, Fe2O3, ZnO, gamma-Al2O3, CeO2, MgO, and La2O3, covering a wide range of point of zero charges (PZC), from pH = 2 to 11, were investigated by combining infrared (IR) spectroscopy with density functional theory (DFT) calculations. The shifts in spectroscopic features of the ionic liquid (IL) upon coating different metal oxides were evaluated to elucidate the interactions between IL and metal oxides as a function of surface acidity. Consequences of these interactions on the short- and long-term thermal stability limits as well as the apparent activation energy (Ea) and rate constant for thermal decomposition of the supported IL were evaluated. Results showed that stability limits and Ea of the IL on each metal oxide significantly decrease with increasing PZC of the metal oxide. Results presented here indicate that the surface acidity strongly controls the IL surface interactions, which determine the material properties, such as thermal stability. Elucidation of these effects offers opportunities for rational design of materials which include direct interactions of ILs with metal oxides, such as solid catalysts with ionic liquid layer (SCILL), and supported ionic liquid phase (SILP) catalysts for catalysis applications or supported ionic liquid membranes (SILM) for separation applications.Publication Metadata only Modifying the electron-trapping process at the BiVO4 surface states via the TiO2 overlayer for enhanced water oxidation(Amer Chemical Soc, 2021) N/A; N/A; N/A; N/A; Department of Chemistry; Department of Chemistry; Usman, Emre; Barzgarvishlaghi, Mahsa; Kahraman, Abdullah; Solati, Navid; Kaya, Sarp; Master Student; PhD Student; PhD Student; Researcher; Faculty Member; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Sciences; N/A; N/A; N/A; N/A; 116541BiVO4 is one of the most promising photoanode candidates to achieve high-efficiency water splitting. However, overwhelming charge recombination at the interface limits its water oxidation activity. In this study, we show that the water oxidation activity of the BiVO4 photoanode is significantly boosted by the TiO2 overlayer prepared by atomic layer deposition. With a TiO2 overlayer of an optimized thickness, the photocurrent at 1.23 VRHE increased from 0.64 to 1.1 mA-cm(-2) under front illumination corresponding to 72% enhancement. We attribute this substantial improvement to enhanced charge separation and suppression of surface recombination due to surface-state passivation. We provide direct evidence via transient photocurrent measurements that the TiO2 overlayer significantly decreases the photogenerated electron-trapping process at the BiVO4 surface. Electron-trapping passivation leads to enhanced electron photoconductivity, which results in higher photocurrent enhancement under front illumination rather than back illumination. This feature can be particularly useful for wireless tandem devices for water splitting as the higher band gap photoanodes are typically utilized with front illumination in such configurations. Even though the electron-trapping process is eliminated completely at higher TiO2 overlayer thicknesses, the charge-transfer resistance at the surface also increases significantly, resulting in a diminished photocurrent. We demonstrate that the ultrathin TiO2 overlayer can be used to fine tune the surface properties of BiVO4 and may be used for similar purposes for other photoelectrode systems and other photoelectrocatalytic reactions.Publication Metadata only Ecofriendly and efficient luminescent solar concentrators based on fluorescent proteins(amer Chemical Soc, 2019) N/A; N/A; N/A; N/A; Department of Electrical and Electronics Engineering; N/A; Department of Molecular Biology and Genetics; Department of Electrical and Electronics Engineering; Department of Molecular Biology and Genetics; Department of Electrical and Electronics Engineering; Sadeghi, Sadra; Melikov, Rustamzhon; Jalali, Houman Bahmani; Karatüm, Onuralp; Srivastava, Shashi Bhushan; Çonkar, Deniz; Karalar, Elif Nur Fırat; Nizamoğlu, Sedat; PhD Student; PhD Student; PhD Student; PhD Student; Researcher; PhD Student; Faculty Member, Faculty Member; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; Graduate School of Sciences and Engineering; College of Sciences; College of Engineering; N/A; N/A; N/A; N/A; N/A; N/A; 206349; 130295In recent years, luminescent solar concentrators (LSCs) have received renewed attention as a versatile platform for large-area, high-efficiency, and low-cost solar energy harvesting. So far, artificial or engineered optical materials, such as rare-earth ions, organic dyes, and colloidal quantum dots (QDs) have been incorporated into LSCs. Incorporation of nontoxic materials into efficient device architectures is critical for environmental sustainability and clean energy production. Here, we demonstrated LSCs based on fluorescent proteins, which are biologically produced, ecofriendly, and edible luminescent biomaterials along with exceptional optical properties. We synthesized mScarlet fluorescent proteins in Escherichia coli expression system, which is the brightest protein with a quantum yield of 61% in red spectral region that matches well with the spectral response of silicon solar cells. Moreover, we integrated fluorescent proteins in an aqueous medium into solar concentrators, which preserved their quantum efficiency in LSCs and separated luminescence and wave-guiding regions due to refractive index contrast for efficient energy harvesting. Solar concentrators based on mScarlet fluorescent proteins achieved an external LSC efficiency of 2.58%, and the integration at high concentrations increased their efficiency approaching to 5%, which may facilitate their use as “luminescent solar curtains” for in-house applications. The liquid-state integration of proteins paves a way toward efficient and “green” solar energy harvesting.Publication Metadata only High-resolution spatiotemporal strain mapping reveals non-uniform deformation in micropatterned elastomers(Iop Publishing Ltd, 2017) N/A; N/A; Department of Chemistry; Department of Mechanical Engineering; Department of Chemistry; Department of Mechanical Engineering; Aksoy, Bekir; Rehman, Ateeq Ur; Bayraktar, Halil; Alaca, Burhanettin Erdem; Master Student; PhD Student; Faculty Member; Faculty Member; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Sciences; College of Engineering; N/A; N/A; 201764; 115108Micropatterns are generated on a vast selection of polymeric substrates for various applications ranging from stretchable electronics to cellular mechanobiological systems. When these patterned substrates are exposed to external loading, strain field is primarily affected by the presence of microfabricated structures and similarly by fabrication-related defects. The capturing of such nonhomogeneous strain fields is of utmost importance in cases where study of the mechanical behavior with a high spatial resolution is necessary. Image-based non-contact strain measurement techniques are favorable and have recently been extended to scanning tunneling microscope and scanning electron microscope images for the characterization of mechanical properties of metallic materials, e.g. steel and aluminum, at the microscale. A similar real-time analysis of strain heterogeneity in elastomers is yet to be achieved during the entire loading sequence. The available measurement methods for polymeric materials mostly depend on cross-head displacement or precalibrated strain values. Thus, they suffer either from the lack of any real-time analysis, spatiotemporal distribution or high resolution in addition to a combination of these factors. In this work, these challenges are addressed by integrating a tensile stretcher with an inverted optical microscope and developing a subpixel particle tracking algorithm. As a proof of concept, the patterns with a critical dimension of 200 mu m are generated on polydimethylsiloxane substrates and strain distribution in the vicinity of the patterns is captured with a high spatiotemporal resolution. In the field of strain measurement, there is always a tradeoff between minimum measurable strain value and spatial resolution. Current noncontact techniques on elastomers can deliver a strain resolution of 0.001% over a minimum length of 5 cm. More importantly, inhomogeneities within this quite large region cannot be captured. The proposed technique can overcome this challenge and provides a displacement measurement resolution of 116 nm and a strain resolution of 0.04% over a gage length of 300 mu m. Similarly, the ability to capture inhomogeneities is demonstrated by mapping strain around a thru-hole. The robustness of the technique is also evaluated, where no appreciable change in strain measurement is observed despite the significant variations imposed on the measurement mesh. The proposed approach introduces critical improvements for the determination of displacement and strain gradients in elastomers regarding the real-time nature of strain mapping with a microscale spatial resolution.