Publications with Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6
Browse
13 results
Search Results
Publication Open Access Emergence of near-infrared photoluminescence via ZnS shell growth on the AgBiS2 nanocrystals(American Chemical Society, 2024) Department of Chemistry; Department of Electrical and Electronics Engineering; Önal, Asım; Kaya, Tarık Safa; Metin, Önder; Nizamoğlu, Sedat; Department of Chemistry; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Sciences; College of EngineeringAgBiS2 nanocrystals (NCs), composed of nontoxic, earth-abundant materials and exhibiting an exceptionally high absorption coefficient from visible to near-infrared (>105 cm(-1)), hold promise for photovoltaics but have lack of photoluminescence (PL) due to intrinsic nonradiative recombination and challenging shell growth. In this study, we reported a facile wet-chemical approach for the epitaxial growth of ZnS shell on AgBiS2 NCs, which triggered the observation of PL emission in the near-infrared (764 nm). Since high quality of the core is critical for epitaxial shell growth, we first obtained rock-salt structured AgBiS2 NCs with high crystallinity, nearly spherical shape and monodisperse size distribution (<6%) via a dual-ligand approach reacting Ag-Bi oleate with elemental sulfur in oleylamine. Next, a zincblende ZnS shell with a low-lattice mismatch of 4.9% was grown on as-prepared AgBiS2 NCs via a highly reactive zinc (Zn(acac)(2)) precursor that led to a higher photoluminescence quantum yield (PLQY) of 15.3%, in comparison with a relatively low reactivity precursor (Zn(ac)(2)) resulting in reduced PLQY. The emission from AgBiS2 NCs with ultrastrong absorption, facilitated by shell growth, can open up new possibilities in lighting, display, and bioimaging.Publication Open Access Understanding the link between inflammasome and apoptosis through the response of THP-1 cells against drugs using droplet-based microfluidics(American Chemical Society (ACS), 2022) Gençtürk, E.; Kasım, M.; Ülgen, K.O.; Department of Physics; Department of Electrical and Electronics Engineering; Kiraz, Alper; Morova, Berna; Faculty Member; Researcher; Department of Physics; Department of Electrical and Electronics Engineering; College of Sciences; College of Engineering; 22542; N/ADroplet-based microfluidic devices are used to investigate monocytic THP-1 cells in response to drug administration.Consistent and reproducible droplets are created, each of which acts as a bioreactor to carry out single cell experiments withminimized contamination and live cell tracking under an invertedfluorescence microscope for more than 2 days. Here, the effects ofthree different drugs (temsirolimus, rifabutin, and BAY 11-7082) on THP-1 are examined and the results are analyzed in the contextof the inflammasome and apoptosis relationship. The ASC adaptor gene tagged with GFP is monitored as the inflammasomereporter. Thus, a systematic way is presented for deciphering cell-to-cell heterogeneity, which is an important issue in cancertreatment. The drug temsirolimus, which has effects of disrupting the mTOR pathway and triggering apoptosis in tumor cells, causesTHP-1 cells to express ASC and to be involved in apoptosis. Treatment with rifabutin, which inhibits proliferation and initiatesapoptosis in cells, affects ASC expression byfirst increasing and then decreasing it. CASP-3, which has a role in apoptosis and isdirectly related to ASC, has an increasing level in inflammasome conditioning. Thus, the cell under the effect of rifabutin might befaced with programmed cell death faster. The drug BAY 11-7082, which is responsible for NF Kappa B inhibition, shows similar results totemsirolimus with more than 60% of cells having highfluorescence intensity (ASC expression). The microfluidic platform presentedhere offers strong potential for studying newly developed small-molecule inhibitors for personalized/precision medicine.Publication Open Access Introduction to noise radar and its waveforms(Multidisciplinary Digital Publishing Institute (MDPI), 2020) De Palo, Francesco; Galati, Gaspare; Pavan, Gabriele; Wasserzier, Christoph; Department of Electrical and Electronics Engineering; Savcı, Kubilay; Department of Electrical and Electronics Engineering; Graduate School of Sciences and EngineeringIn the system-level design for both conventional radars and noise radars, a fundamental element is the use of waveforms suited to the particular application. In the military arena, low probability of intercept (LPI) and of exploitation (LPE) by the enemy are required, while in the civil context, the spectrum occupancy is a more and more important requirement, because of the growing request by non-radar applications; hence, a plurality of nearby radars may be obliged to transmit in the same band. All these requirements are satisfied by noise radar technology. After an overview of the main noise radar features and design problems, this paper summarizes recent developments in "tailoring" pseudo-random sequences plus a novel tailoring method aiming for an increase of detection performance whilst enabling to produce a (virtually) unlimited number of noise-like waveforms usable in different applications.Publication Open Access Exciton recycling via InP quantum dot funnels for luminescent solar concentrators(Tsinghua University, 2021) Ow-Yang, Cleva W.; N/A; N/A; Department of Physics; Department of Electrical and Electronics Engineering; Jalali, Houman Bahmani; Sadeghi, Sadra; Toker, Işınsu Baylam; Han, Mertcan; Sennaroğlu, Alphan; Nizamoğlu, Sedat; PhD Student; Master Student; Faculty Member; Faculty Member; Department of Physics; Department of Electrical and Electronics Engineering; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; N/A; N/A; 23851; 130295Luminescent solar concentrators (LSC) absorb large-area solar radiation and guide down-converted emission to solar cells for electricity production. Quantum dots (QDs) have been widely engineered at device and quantum dot levels for LSCs. Here, we demonstrate cascaded energy transfer and exciton recycling at nanoassembly level for LSCs. The graded structure composed of different sized toxic-heavy-metal-free InP/ZnS core/shell QDs incorporated on copper doped InP QDs, facilitating exciton routing toward narrow band gap QDs at a high nonradiative energy transfer efficiency of 66%. At the final stage of non-radiative energy transfer, the photogenerated holes make ultrafast electronic transitions to copper-induced mid-gap states for radiative recombination in the near-infrared. The exciton recycling facilitates a photoluminescence quantum yield increase of 34% and 61% in comparison with semi-graded and ungraded energy profiles, respectively. Thanks to the suppressed reabsorption and enhanced photoluminescence quantum yield, the graded LSC achieved an optical quantum efficiency of 22.2%. Hence, engineering at nanoassembly level combined with nonradiative energy transfer and exciton funneling offer promise for efficient solar energy harvesting.Publication Open Access Biocompatible quantum funnels for neural photostimulation(American Chemical Society (ACS), 2019) N/A; Department of Chemical and Biological Engineering; N/A; Department of Electrical and Electronics Engineering; Department of Molecular Biology and Genetics; N/A; Jalali, Houman Bahmani; Doğru-Yüksel, Itır Bakış; Eren, Güncem Özgün; Nizamoğlu, Sedat; Karatüm, Onuralp; Melikov, Rustamzhon; Dikbaş, Uğur Meriç; Kavaklı, İbrahim Halil; Sadeghi, Sadra; Yıldız, Erdost; Ergün, Çağla; Şahin, Afsun; PhD Student; Faculty Member; PhD Student; Master Student; Faculty Member; PhD Student; PhD Student; Faculty Member; Department of Chemical and Biological Engineering; Department of Electrical and Electronics Engineering; Department of Molecular Biology and Genetics; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Sciences and Engineering; College of Engineering; College of Sciences; School of Medicine; N/A; N/A; N/A; 130295; N/A; N/A; N/A; 40319; N/A; N/A; N/A; 171267Neural photostimulation has high potential to understand the working principles of complex neural networks and develop novel therapeutic methods for neurological disorders. A key issue in the light-induced cell stimulation is the efficient conversion of light to bioelectrical stimuli. In photosynthetic systems developed in millions of years by nature, the absorbed energy by the photoabsorbers is transported via nonradiative energy transfer to the reaction centers. Inspired by these systems, neural interfaces based on biocompatible quantum funnels are developed that direct the photogenerated charge carriers toward the bionanojunction for effective photostimulation. Funnels are constructed with indium-based rainbow quantum dots that are assembled in a graded energy profile. Implementation of a quantum funnel enhances the generated photoelectrochemical current 215% per unit absorbance in comparison with ungraded energy profile in a wireless and free-standing mode and facilitates optical neuromodulation of a single cell. This study indicates that the control of charge transport at nanoscale can lead to unconventional and effective neural interfaces.Publication Open Access Silk-hydrogel lenses for light-emitting diodes(Nature Publishing Group (NPG), 2017) Melikov, Rustamzhon; Press, Daniel Aaron; Kumar, Baskaran Ganesh; Dogru, Itir Bakis; Sadeghi, Sadra; Chirea, Mariana; Department of Chemistry; Department of Electrical and Electronics Engineering; Yılgör, İskender; Nizamoğlu, Sedat; Faculty Member; Faculty Member; Department of Chemistry; Department of Electrical and Electronics Engineering; College of Sciences; College of Engineering; 24181; 130295Today the high demand for electronics leads to massive production of waste, thus green materials based electronic devices are becoming more important for environmental protection and sustainability. The biomaterial based hydrogels are widely used in tissue engineering, but their uses in photonics are limited. In this study, silk fibroin protein in hydrogel form is explored as a bio-friendly alternative to conventional polymers for lens applications in light-emitting diodes. The concentration of silk fibroin protein and crosslinking agent had direct effects on optical properties of silk hydrogel. The spatial radiation intensity distribution was controlled via dome- and crater-type silk-hydrogel lenses. The hydrogel lens showed a light extraction efficiency over 0.95 on a warm white LED. The stability of silk hydrogel lens is enhanced approximately three-folds by using a biocompatible/biodegradable poly(ester-urethane) coating and more than three orders of magnitude by using an edible paraffin wax coating. Therefore, biomaterial lenses show promise for green optoelectronic applications.Publication Open Access Minimum length scheduling for multi-cell full duplex wireless powered communication networks(Multidisciplinary Digital Publishing Institute (MDPI), 2021) Iqbal, M. S.; Sadi, Y.; Department of Electrical and Electronics Engineering; Ergen, Sinem Çöleri; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 7211Wireless powered communication networks (WPCNs) will be a major enabler of massive machine type communications (MTCs), which is a major service domain for 5G and beyond systems. These MTC networks will be deployed by using low-power transceivers and a very limited set of transmission configurations. We investigate a novel minimum length scheduling problem for multi-cell full-duplex wireless powered communication networks to determine the optimal power control and scheduling for constant rate transmission model. The formulated optimization problem is combinatorial in nature and, thus, difficult to solve for the global optimum. As a solution strategy, first, we decompose the problem into the power control problem (PCP) and scheduling problem. For the PCP, we propose the optimal polynomial time algorithm based on the evaluation of Perron– Frobenius conditions. For the scheduling problem, we propose a heuristic algorithm that aims to maximize the number of concurrently transmitting users by maximizing the allowable interference on each user without violating the signal-to-noise-ratio (SNR) requirements. Through extensive simulations, we demonstrate a 50% reduction in the schedule length by using the proposed algorithm in comparison to unscheduled concurrent transmissions.Publication Open Access An easy-to-fabricate microfluidic shallow trench induced three-dimensional cell culturing and imaging (STICI3D) platform(American Chemical Society (ACS), 2022) Coşkun, Umut Can; Rehman, Ateeq Ur; Gülle, Merve; Erten, Ahmet; N/A; Department of Physics; Department of Electrical and Electronics Engineering; N/A; Başer, Hatice Nur; Baysal, Kemal; Kiraz, Alper; Kul, Demet; Kuş, Funda; Morova, Berna; Faculty Member; Faculty Member; Researcher; Department of Physics; Department of Electrical and Electronics Engineering; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Sciences and Engineering; School of Medicine; College of Sciences; College of Engineering; N/A; 119184; 22542; N/A; N/A; N/ACompared to the established monolayer approach of two-dimensional cell cultures, three-dimensional (3D) cultures more closely resemble in vivo models; that is, the cells interact and form clusters mimicking their organization in native tissue. Therefore, the cellular microenvironment of these 3D cultures proves to be more clinically relevant. In this study, we present a novel easy-to-fabricate microfluidic shallow trench induced 3D cell culturing and imaging (STICI3D) platform, suitable for rapid fabrication as well as mass manufacturing. Our design consists of a shallow trench, within which various hydrogels can be formed in situ via capillary action, between and fully in contact with two side channels that allow cell seeding and media replenishment, as well as forming concentration gradients of various molecules. Compared to a micropillar-based burst valve design, which requires sophisticated microfabrication facilities, our capillary-based STICI3D can be fabricated using molds prepared with simple adhesive tapes and razors alone. The simple design supports the easy applicability of mass-production methods such as hot embossing and injection molding as well. To optimize the STICI3D design, we investigated the effect of individual design parameters such as corner radii, trench height, and surface wettability under various inlet pressures on the confinement of a hydrogel solution within the shallow trench using Computational Fluid Dynamics simulations supported with experimental validation. We identified ideal design values that improved the robustness of hydrogel confinement and reduced the effect of end-user dependent factors such as hydrogel solution loading pressure. Finally, we demonstrated cultures of human mesenchymal stem cells and human umbilical cord endothelial cells in the STICI3D to show that it supports 3D cell cultures and enables precise control of cellular microenvironment and real-time microscopic imaging. The easy-to-fabricate and highly adaptable nature of the STICI3D platform makes it suitable for researchers interested in fabricating custom polydimethylsiloxane devices as well as those who are in need of ready-to-use plastic platforms. As such, STICI3Ds can be used in imaging cell-cell interactions, angiogenesis, semiquantitative analysis of drug response in cells, and measurement of transport through cell sheet barriers.Publication Open Access MEMS stage integrated with microlens arrays for high-resolution beam steering(Elsevier, 2009) Hibert, Cyrille; Seren, Hüseyin R.; Department of Electrical and Electronics Engineering; Gökçe, Sertan Kutal; Holmstrom, Sven; Ataman, Çağlar; Arslan, Aslıhan; Ürey, Hakan; Master Student; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; N/A; N/A; N/A; N/A; 8579A novel micromechanical stage with a uniaxial set of combfingers capable of 2D actuation is designed and developed. Driven at resonance the stage deflects up to 108 mu m out-of-plane and 102 mu m in-plane, with 140V and 94V peak-to-peak actuation voltage, respectively.Publication Open Access Genetic algorithm-driven surface-enhanced Raman spectroscopy substrate optimization(Multidisciplinary Digital Publishing Institute (MDPI), 2021) Yanık, Cenk; Department of Electrical and Electronics Engineering; N/A; Onbaşlı, Mehmet Cengiz; Bilgin, Buse; Torun, Hülya; Faculty Member; Department of Electrical and Electronics Engineering; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); College of Engineering; Graduate School of Sciences and Engineering; 258783; N/A; N/ASurface-enhanced Raman spectroscopy (SERS) is a highly sensitive and molecule-specific detection technique that uses surface plasmon resonances to enhance Raman scattering from analytes. In SERS system design, the substrates must have minimal or no background at the incident laser wavelength and large Raman signal enhancement via plasmonic confinement and grating modes over large areas (i.e., squared millimeters). These requirements impose many competing design constraints that make exhaustive parametric computational optimization of SERS substrates pro-hibitively time consuming. Here, we demonstrate a genetic-algorithm (GA)-based optimization method for SERS substrates to achieve strong electric field localization over wide areas for recon-figurable and programmable photonic SERS sensors. We analyzed the GA parameters and tuned them for SERS substrate optimization in detail. We experimentally validated the model results by fabricating the predicted nanostructures using electron beam lithography. The experimental Raman spectrum signal enhancements of the optimized SERS substrates validated the model predictions and enabled the generation of a detailed Raman profile of methylene blue fluorescence dye. The GA and its optimization shown here could pave the way for photonic chips and components with arbitrary design constraints, wavelength bands, and performance targets.