Research Outputs
Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2
Browse
37 results
Search Results
Publication Open Access 3D printing of elastomeric bioinspired complex adhesive microstructures(Wiley, 2021) Dayan, Cem Balda; Chun, Sungwoo; Krishna Subbaiah, Nagaraj; Drotlef, Dirk Michael; Akolpoğlu, Mükrime Birgül; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; College of Engineering; School of Medicine; 297104Bioinspired elastomeric structural adhesives can provide reversible and controllable adhesion on dry/wet and synthetic/biological surfaces for a broad range of commercial applications. Shape complexity and performance of the existing structural adhesives are limited by the used specific fabrication technique, such as molding. To overcome these limitations by proposing complex 3D microstructured adhesive designs, a 3D elastomeric microstructure fabrication approach is implemented using two-photon-polymerization-based 3D printing. A custom aliphatic urethane-acrylate-based elastomer is used as the 3D printing material. Two designs are demonstrated with two combined biological inspirations to show the advanced capabilities enabled by the proposed fabrication approach and custom elastomer. The first design focuses on springtail- and gecko-inspired hybrid microfiber adhesive, which has the multifunctionalities of side-surface liquid super-repellency, top-surface liquid super-repellency, and strong reversible adhesion features in a single fiber array. The second design primarily centers on octopus- and gecko-inspired hybrid adhesive, which exhibits the benefits of both octopus- and gecko-inspired microstructured adhesives for strong reversible adhesion on both wet and dry surfaces, such as skin. This fabrication approach could be used to produce many other 3D complex elastomeric structural adhesives for future real-world applications.Publication Metadata only A comprehensive evaluation of parameters governing the cyclic stability of ultrafine-grained FCC alloys(Elsevier Science Sa, 2011) Niendorf, T.; Maier, H. J.; Department of Mechanical Engineering; Canadinç, Demircan; Faculty Member; Department of Mechanical Engineering; College of Engineering; 23433The current paper presents results of a thorough experimental program undertaken to shed light onto the mechanisms dictating the cyclic stability in ultrafine-grained (UFG) alloys with a face-centered cubic structure. Cyclic deformation responses of several copper- and aluminum-based UFG alloys were investigated and the corresponding microstructural evolutions were analyzed with various microscopy techniques. The important finding is that a larger volume fraction of high-angle grain boundaries and solid solution hardening significantly improve the fatigue performance of these alloys at elevated temperatures and high strain rates, and under large applied strain amplitudes.Publication Metadata only A deep etching mechanism for trench-bridging silicon nanowires(Iop Publishing Ltd, 2016) Wollschlaeger, Nicole; Österle, Werner; Leblebici, Yusuf; N/A; Department of Mechanical Engineering; Taşdemir, Zuhal; Alaca, Burhanettin Erdem; PhD Student; Faculty Member; Department of Mechanical Engineering; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Engineering; N/A; 115108Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a topdown, silicon-on-insulator technology. The technology provides a pathway for obtaining wellcontrolled silicon nanowires along with the surrounding microscale features up to a three-orderof-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 mu m. Nanowire cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire. The adoption of the technology in the fabrication of micro and nanosystems can potentially lead to a significant reduction in process complexity by facilitating direct access to the nanowire during surface processes such as contact formation and doping.Publication Metadata only A deformation-based approach to tuning of magnetic micromechanical resonators(2018) Yalçınkaya, Arda D.; Department of Mechanical Engineering; N/A; Department of Mechanical Engineering; Biçer, Mahmut; Esfahani, Mohammad Nasr; Alaca, Burhanettin Erdem; Researcher; PhD Student; Faculty Member; Department of Mechanical Engineering; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 115108Resonance frequency tuning in magnetic micromechanical resonators remains a primary field of study for frequency reference applications. The use of magnetic micromechanical resonators for innovative timing, oscillator and sensing applications necessitates a platform for the precise control of the resonance frequency. The present work addresses a deformation based technique for tuning the resonance frequency of nickel micromechanical resonators. Frequency response is measured through magnetic actuation and optical readout. The tuning approach is based on a combination of flexural deformation and uniaxial strain. The bending deformation is achieved by using a DC current through the microbeam. This magnetomotive mechanism reduces the resonance frequency by about 13% for a maximum DC current of 80 mA. A substrate bending method is used for applying uniaxial strain to increase the resonance frequency by about 8%. A bidirectional frequency modulation is thus demonstrated by utilizing both deformation techniques. The interpretation of results is carried out by finite element analysis and electromechanical analogy in an equivalent circuit. Using deformation techniques, this study provides a rigorous approach to control the resonance frequency of magnetic micromechanical resonators.Publication Metadata only A hierarchically porous nickel-copper phosphide nano-foam for efficient electrochemical splitting of water(Royal Soc Chemistry, 2017) Wei, Li; Goh, Kunli; Karahan, H. Enis; Chang, Jian; Zhai, Shengli; Chen, Xuncai; Chen, Yuan; N/A; Birer, Özgür; Researcher; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); N/A; N/AElectrochemical splitting of water to produce oxygen (O-2) and hydrogen (H-2) through a cathodic hydrogen evolution reaction (HER) and an anodic oxygen evolution reaction (OER) is a promising green approach for sustainable energy supply. Here we demonstrated a porous nickel-copper phosphide (NiCuP) nano-foam as a bifunctional electrocatalyst for highly efficient total water splitting. Prepared from a bubble-templated electrodeposition method and subsequent low-temperature phosphidization, NiCuP has a hierarchical pore structure with a large electrochemical active surface area. To reach a high current density of 50 mA cm(-2), it requires merely 146 and 300 mV with small Tafel slopes of 47 and 49 mV dec(-1) for HER and OER, respectively. The total water splitting test using NiCuP as both the anode and cathode showed nearly 100% Faradic efficiency and surpassed the performances of electrode pairs using commercial Pt/C and IrO2 catalysts under our test conditions. The high activity of NiCuP can be attributed to (1) the conductive NiCu substrates, (2) a large electrochemically active surface area together with a combination of pores of different sizes, and (3) the formation of active Ni/Cu oxides/hydroxides while keeping a portion of more conductive Ni/Cu phosphides in the nano-foam. We expect the current catalyst to enable the manufacturing of affordable water splitting systems.Publication Metadata only A mechanical transduction-based molecular communication receiver for ınternet of nano things (IoNT)(Assoc Computing Machinery, 2021) N/A; Department of Electrical and Electronics Engineering; Aktaş, Dilara; Akan, Özgür Barış; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 6647Molecular conununication (MC) is one of the most promising technology to enable nanonetworks. Despite many aspects of MC have been investigated broadly, the physical design of the MC receiver has gained little interest. High-performance MC receivers based on bioFETs are proposed and extensively analyzed. However, they have some challenges such as limited detection with charged molecules, Debye screening, and the need for reference electrodes. To overcome these shortcomings, we propose a mechanical-based transducing scheme. In particular, we focus on a Flexure field-effect transistor (FET)-based MC receiver architecture, which provides exponentially high sensitivity by utilizing a nonlinear electromechanical coupling. In addition, the detection of neutral molecules with much simpler instrumentation is possible. In this paper, we analyze its fundamental performance metrics; sensitivity, noise power, signal-to-noise ratio, and the symbol error probability, from an MC theoretical perspective.Publication Metadata only A novel magnetomechanical pump to actuate ferrofluids in minichannels(Begell House, Inc, 2011) Bilgin, Alp; Kurtoglu, Evrim; Erk, Hadi Cagdas; Sesen, Muhsincan; Kosar, Ali; Department of Chemistry; Acar, Havva Funda Yağcı; Faculty Member; Department of Chemistry; College of Sciences; 178902An improvement in the current methods of ferrofluid actuation was presented in this paper. A novel magnetomechanical microfluidic pump design was implemented with a ferrofluid as the active working fluid. Obtained flow rates were comparable to previous results in this research line. It was also seen that the basic pump architecture, which the subject pump is based on, enables much more room for further development.Publication Open Access Adaptive self-sealing suction-based soft robotic gripper(Wiley, 2021) Song, Sukho; Drotlef, Dirk-Michael; Son, Donghoon; Koivikko, Anastasia; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; School of Medicine; College of Engineering; 297104While suction cups prevail as common gripping tools for a wide range of real-world parts and surfaces, they often fail to seal the contact interface when engaging with irregular shapes and textured surfaces. In this work, the authors propose a suction-based soft robotic gripper where suction is created inside a self-sealing, highly conformable and thin flat elastic membrane contacting a given part surface. Such soft gripper can self-adapt the size of its effective suction area with respect to the applied load. The elastomeric membrane covering edge of the soft gripper can develop an air-tight self-sealing with parts even smaller than the gripper diameter. Such gripper shows 4 times higher adhesion than the one without the membrane on various textured surfaces. The two major advantages, underactuated self-adaptability and enhanced suction performance, allow the membrane-based suction mechanism to grip various three-dimensional (3D) geometries and delicate parts, such as egg, lime, apple, and even hydrogels without noticeable damage, which can have not been gripped with the previous adhesive microstructures-based and active suction-based soft grippers. The structural and material simplicity of the proposed soft gripper design can have a broad use in diverse fields, such as digital manufacturing, robotic manipulation, transfer printing, and medical gripping.Publication Metadata only Anticancer use of nanoparticles as nucleic acid carriers(Amer Scientific Publishers, 2014) Gozuacik, D.; Akkoc, Y.; Kosar, A.; Dogan-Ekici, A. Isin; Ekici, Sinan; Department of Chemistry; Acar, Havva Funda Yağcı; Faculty Member; Department of Chemistry; College of Sciences; 178902Advances in nanotechnology opened up new horizons in the field of cancer research. Nanoparticles made of various organic and inorganic materials and with different optical, magnetic and physical characteristics have the potential to revolutionize the way we diagnose, treat and follow-up cancers. Importantly, designs that might allow tumor-specific targeting and lesser side effects may be produced. Nanoparticles may be tailored to carry conventional chemotherapeutics or new generation organic drugs. Currently, most of the drugs that are commonly used, are small chemical molecules targeting disease-related enzymes. Recent progress in RNA interference technologies showed that, even proteins that are considered to be "undruggable" by small chemical molecules, might be targeted by small RNAs for the purpose of curing diseases, including cancer. In fact, small RNAs such as siRNAs, shRNAs and miRNAs can drastically change cellular levels of almost any given disease-associated protein or protein group, resulting in a therapeutic effect. Gene therapy attempts were failing mainly due to delivery viral vector-related side effects. Biocompatible, non-toxic and efficient nanoparticle carriers raise new hopes for the gene therapy of cancer. In this review article, we discuss new advances in nucleic acid and especially RNA carrier nanoparticles, and summarize recent progress about their use in cancer therapy.Publication Metadata only Bacterial physiology is a key modulator of the antibacterial activity of graphene oxide(Royal Society of Chemistry (RSC), 2016) Karahan, H. Enis; Wei, Li; Goh, Kunli; Liu, Zhe; Dehghani, Fariba; Xu, Chenjie; Wei, Jun; Chen, Yuan; Department of Chemistry; Birer, Özgür; Researcher; Department of Chemistry; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Sciences; N/ACarbon-based nanomaterials have a great potential as novel antibacterial agents; however, their interactions with bacteria are not fully understood. This study demonstrates that the antibacterial activity of graphene oxide (GO) depends on the physiological state of cells for both Gram-negative and -positive bacteria. GO susceptibility of bacteria is the highest in the exponential growth phase, which are in growing physiology, and stationary-phase (non-growing) cells are quite resistant against GO. Importantly, the order of GO susceptibility of E. coli with respect to the growth phases (exponential >> decline > stationary) correlates well with the changes in the envelope ultrastructures of the cells. Our findings are not only fundamentally important but also particularly critical for practical antimicrobial applications of carbon-based nanomaterials.