Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 29
  • Thumbnail Image
    PublicationOpen Access
    A new series of indeno[1,2-c]pyrazoles as EGFR TK inhibitors for NSCLC therapy
    (Multidisciplinary Digital Publishing Institute (MDPI), 2022) Özdemir, A.; Sever, B.; Tateishi, H.; Otsuka, M.; Fujita, M.; Altıntop, M.D.; Department of Molecular Biology and Genetics; Çiftçi, Halil İbrahim; Department of Molecular Biology and Genetics; College of Sciences
    Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death throughout the world. Due to the shortcomings of traditional chemotherapy, targeted therapies have come into prominence for the management of NSCLC. In particular, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) therapy has emerged as a first-line therapy for NSCLC patients with EGFR-activating mutations. In this context, new indenopyrazoles, which were prepared by an efficient microwave-assisted method, were subjected to in silico and in vitro assays to evaluate their potency as EGFR TK-targeted anti-NSCLC agents. Compound 4 was the most promising antitumor agent towards A549 human lung adenocarcinoma cells, with an IC50 value of 6.13 µM compared to erlotinib (IC50 = 19.67 µM). Based on its low cytotoxicity to peripheral blood mononuclear cells (PBMCs), it can be concluded that compound 4 exerts selective antitumor action. This compound also inhibited EGFR TK with an IC50 value of 17.58 µM compared to erlotinib (IC50 = 0.04 µM) and induced apoptosis (56.30%). Taking into account in silico and in vitro data, compound 4 stands out as a potential EGFR TKI for the treatment of NSCLC.
  • Placeholder
    Publication
    Attenuation of Type IV pili activity by natural products
    (Taylor & Francis Inc, 2024) Yalkut, Kerem; Hassine, Soumaya Ben Ali; Kula, Ceyda; Ozcan, Aslihan; Avci, Fatma Gizem; Akbulut, Berna Sariyar; Ozbek, Pemra; Department of Chemical and Biological Engineering; Başaran, Esra; Keskin, Özlem; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; College of Engineering
    The virulence factor Type IV pili (T4P) are surface appendages used by the opportunistic pathogen Pseudomonas aeruginosa for twitching motility and adhesion in the environment and during infection. Additionally, the use of these appendages by P. aeruginosa for biofilm formation increases its virulence and drug resistance. Therefore, attenuation of the activity of T4P would be desirable to control P. aeruginosa infections. Here, a computational approach has been pursued to screen natural products that can be used for this purpose. PilB, the elongation ATPase of the T4P machinery in P. aeruginosa, has been selected as the target subunit and virtual screening of FDA-approved drugs has been conducted. Screening identified two natural compounds, ergoloid and irinotecan, as potential candidates for inhibiting this T4P-associated ATPase in P. aeruginosa. These candidate compounds underwent further rigorous evaluation through molecular dynamics (MD) simulations and then through in vitro twitching motility and biofilm inhibition assays. Notably, ergoloid emerged as a particularly promising candidate for weakening the T4P activity by inhibiting the elongation ATPases associated with T4P. This repurposing study paves the way for the timely discovery of antivirulence drugs as an alternative to classical antibiotic treatments to help combat infections caused by P. aeruginosa and related pathogens.
  • Thumbnail Image
    PublicationOpen Access
    CCRXP: exploring clusters of conserved residues in protein structures
    (Oxford University Press (OUP), 2010) Ahmad, Shandar; Mizuguchi, Kenji; Sarai, Akinori; Nussinov, Ruth; Department of Chemical and Biological Engineering; Keskin, Özlem; PhD Student; PhD Student; Department of Chemical and Biological Engineering; College of Engineering; 26605
    Conserved residues forming tightly packed clusters have been shown to be energy hot spots in both protein-protein and protein-DNA complexes. A number of analyses on these clusters of conserved residues (CCRs) have been reported, all pointing to a crucial role that these clusters play in protein function, especially protein-protein and protein-DNA interactions. However, currently there is no publicly available tool to automatically detect such clusters. Here, we present a web server that takes a coordinate file in PDB format as input and automatically executes all the steps to identify CCRs in protein structures. In addition, it calculates the structural properties of each residue and of the CCRs. We also present statistics to show that CCRs, determined by these procedures, are significantly enriched in 'hot spots' in protein-protein and protein-RNA complexes, which supplements our more detailed similar results on protein-DNA complexes. We expect that CCRXP web server will be useful in studies of protein structures and their interactions and selecting mutagenesis targets.
  • Thumbnail Image
    PublicationOpen Access
    Centriolar satellites are required for efficient ciliogenesis and ciliary content regulation
    (Wiley, 2019) Department of Molecular Biology and Genetics; Department of Chemical and Biological Engineering; Odabaşı, Ezgi; Karalar, Elif Nur Fırat; Gül, Şeref; Kavaklı, İbrahim Halil; Other; Researcher; Faculty Member; Department of Molecular Biology and Genetics; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; N/A; 206349; N/A; 40319
    Centriolar satellites are ubiquitous in vertebrate cells. They have recently emerged as key regulators of centrosome/cilium biogenesis, and their mutations are linked to ciliopathies. However, their precise functions and mechanisms of action remain poorly understood. Here, we generated a kidney epithelial cell line (IMCD3) lacking satellites by CRISPR/Cas9-mediated PCM1 deletion and investigated the cellular and molecular consequences of satellite loss. Cells lacking satellites still formed full-length cilia but at significantly lower numbers, with changes in the centrosomal and cellular levels of key ciliogenesis factors. Using these cells, we identified new ciliary functions of satellites such as regulation of ciliary content, Hedgehog signaling, and epithelial cell organization in three-dimensional cultures. However, other functions of satellites, namely proliferation, cell cycle progression, and centriole duplication, were unaffected in these cells. Quantitative transcriptomic and proteomic profiling revealed that loss of satellites affects transcription scarcely, but significantly alters the proteome. Importantly, the centrosome proteome mostly remains unaltered in the cells lacking satellites. Together, our findings identify centriolar satellites as regulators of efficient cilium assembly and function and provide insight into disease mechanisms of ciliopathies.
  • Thumbnail Image
    PublicationOpen Access
    Chronically radiation-exposed survivor glioblastoma cells display poor response to Chk1 inhibition under hypoxia
    (Multidisciplinary Digital Publishing Institute (MDPI), 2022) Department of Molecular Biology and Genetics; Değirmenci, Nareg Pınarbaşı; Sur, İlknur Erdem; Akçay, Vuslat; Bölükbaşı, Yasemin; Selek, Uğur; Solaroğlu, İhsan; Önder, Tuğba Bağcı; PhD Student; Faculty Member; Faculty Member; Faculty Member; Department of Molecular Biology and Genetics; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Health Sciences; College of Sciences; School of Medicine; Koç University Hospital; N/A; N/A; N/A; 216814; 27211; 102059; 184359
    Glioblastoma is the most malignant primary brain tumor, and a cornerstone in its treatment is radiotherapy. However, tumor cells surviving after irradiation indicates treatment failure; therefore, better understanding of the mechanisms regulating radiotherapy response is of utmost importance. In this study, we generated clinically relevant irradiation-exposed models by applying fractionated radiotherapy over a long time and selecting irradiation-survivor (IR-Surv) glioblastoma cells. We examined the transcriptomic alterations, cell cycle and growth rate changes and responses to secondary radiotherapy and DNA damage response (DDR) modulators. Accordingly, IR-Surv cells exhibited slower growth and partly retained their ability to resist secondary irradiation. Concomitantly, IR-Surv cells upregulated the expression of DDR-related genes, such as CHK1, ATM, ATR, and MGMT, and had better DNA repair capacity. IR-Surv cells displayed downregulation of hypoxic signature and lower induction of hypoxia target genes, compared to naive glioblastoma cells. Moreover, Chk1 inhibition alone or in combination with irradiation significantly reduced cell viability in both naive and IR-Surv cells. However, IR-Surv cells' response to Chk1 inhibition markedly decreased under hypoxic conditions. Taken together, we demonstrate the utility of combining DDR inhibitors and irradiation as a successful approach for both naive and IR-Surv glioblastoma cells as long as cells are refrained from hypoxic conditions.
  • Thumbnail Image
    PublicationOpen Access
    Coagulation measurement from whole blood using vibrating optical fiber in a disposable cartridge
    (Society of Photo-optical Instrumentation Engineers (SPIE), 2017) Çivitci, Fehmi; Barış, İbrahim; Yaralıoğlu, Göksenin; Department of Electrical and Electronics Engineering; Yaras, Yusuf Samet; Gündüz, Ali Bars; Sağlam, Gökhan; Ölçer, Selim; Ürey, Hakan; Other; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; N/A; N/A; N/A; N/A; 8579
    In clinics, blood coagulation time measurements are performed using mechanical measurements with blood plasma. Such measurements are challenging to do in a lab-on-a-chip (LoC) system using a small volume of whole blood. Existing LoC systems use indirect measurement principles employing optical or electrochemical methods. We developed an LoC system using mechanical measurements with a small volume of whole blood without requiring sample preparation. The measurement is performed in a microfluidic channel where two fibers are placed inline with a small gap in between. The first fiber operates near its mechanical resonance using remote magnetic actuation and immersed in the sample. The second fiber is a pick-up fiber acting as an optical sensor. The microfluidic channel is engineered innovatively such that the blood does not block the gap between the vibrating fiber and the pick-up fiber, resulting in high signal-to-noise ratio optical output. The control plasma test results matched well with the plasma manufacturer's datasheet. Activated-partial-thromboplastin-time tests were successfully performed also with human whole blood samples, and the method is proven to be effective. Simplicity of the cartridge design and cost of readily available materials enable a low-cost point-of-care device for blood coagulation measurements.
  • Thumbnail Image
    PublicationOpen Access
    Comprehensive research on past and future therapeutic strategies devoted to treatment of amyotrophic lateral sclerosis
    (Multidisciplinary Digital Publishing Institute (MDPI), 2022) Sever, Belgin; Sever, Hilal; Ocak, Firdevs; Yuluğ, Burak; Tateishi, Hiroshi; Tateishi, Takahisa; Otsuka, Masami; Mikako, Fujita; Department of Molecular Biology and Genetics; Başak, Ayşe Nazlı; Çiftçi, Halil İbrahim; Demirci, Hasan; Faculty Member; Faculty Member; Department of Molecular Biology and Genetics; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); College of Sciences; 1512; N/A; 307350
    Amyotrophic lateral sclerosis (ALS) is a rapidly debilitating fatal neurodegenerative disorder, causing muscle atrophy and weakness, which leads to paralysis and eventual death. ALS has a multifaceted nature affected by many pathological mechanisms, including oxidative stress (also via protein aggregation), mitochondrial dysfunction, glutamate-induced excitotoxicity, apoptosis, neuroinflammation, axonal degeneration, skeletal muscle deterioration and viruses. This complexity is a major obstacle in defeating ALS. At present, riluzole and edaravone are the only drugs that have passed clinical trials for the treatment of ALS, notwithstanding that they showed modest benefits in a limited population of ALS. A dextromethorphan hydrobromide and quinidine sulfate combination was also approved to treat pseudobulbar affect (PBA) in the course of ALS. Globally, there is a struggle to prevent or alleviate the symptoms of this neurodegenerative disease, including implementation of antisense oligonucleotides (ASOs), induced pluripotent stem cells (iPSCs), CRISPR-9/Cas technique, non-invasive brain stimulation (NIBS) or ALS-on-a-chip technology. Additionally, researchers have synthesized and screened new compounds to be effective in ALS beyond the drug repurposing strategy. Despite all these efforts, ALS treatment is largely limited to palliative care, and there is a strong need for new therapeutics to be developed. This review focuses on and discusses which therapeutic strategies have been followed so far and what can be done in the future for the treatment of ALS.
  • Thumbnail Image
    PublicationOpen Access
    DNABINDPROT: fluctuation-based predictor of DNA-binding residues within a network of interacting residues
    (Oxford University Press (OUP), 2010) Ozbek, Pemra; Soner, Seren; Erman, Burak; Haliloglu, Turkan; Department of Chemical and Biological Engineering; Erman, Burak; Faculty Member; Department of Chemical and Biological Engineering; College of Engineering; 179997
    DNABINDPROT is designed to predict DNA-binding residues, based on the fluctuations of residues in high-frequency modes by the Gaussian network model. The residue pairs that display high mean-square distance fluctuations are analyzed with respect to DNA binding, which are then filtered with their evolutionary conservation profiles and ranked according to their DNA-binding propensities. If the analyses are based on the exact outcome of fluctuations in the highest mode, using a conservation threshold of 5, the results have a sensitivity, specificity, precision and accuracy of 9.3%, 90.5%, 18.1% and 78.6%, respectively, on a dataset of 36 unbound-bound protein structure pairs. These values increase up to 24.3%, 93.4%, 45.3% and 83.3% for the respective cases, when the neighboring two residues are considered. The relatively low sensitivity appears with the identified residues being selective and susceptible more for the binding core residues rather than all DNA-binding residues. The predicted residues that are not tagged as DNA-binding residues are those whose fluctuations are coupled with DNA-binding sites. They are in close proximity as well as plausible for other functional residues, such as ligand and protein-protein interaction sites.
  • Placeholder
    Publication
    Doxorubicin-loaded liposome-like particles embedded in chitosan/hyaluronic acid-based hydrogels as a controlled drug release model for local treatment of glioblastoma
    (Elsevier B.V., 2024) Adiguzel, Seyfure; Karamese, Miray; Kugu, Senanur; Kacar, Elif Ayse; Esen, Muhammed Fevzi; Erdogan, Hakan; Bacanli, Merve Güdül; Altuntas, Sevde; Department of Mechanical Engineering; Taşoğlu, Savaş; Department of Mechanical Engineering; College of Engineering
    Glioblastoma (GBM) resection and medication treatment are limited, and local drug therapies are required. This study aims to create a hybrid system comprising liposome-like particles (LLP-DOX) encapsulated in chitosan/hyaluronic acid/polyethyleneimine (CHI/HA/PEI) hydrogels, enabling controlled local delivery of doxorubicin (DOX) into the resection cavity for treating GBM. CHI/HA/PEI hydrogels were characterized morphologically, physically, chemically, mechanically, and thermally. Findings revealed a high network and compact micro-network structure, along with enhanced physical and thermal stability compared to CHI/HA hydrogels. Simultaneously, drug release from CHI/HA/PEI/LLP-DOX hydrogels was assessed, revealing continuous and controlled release up to the 148th hour, with no significant burst release. Cell studies showed that CHI/HA/PEI hydrogels are biocompatible with low genotoxicity. Additionally, LLP-DOX-loaded CHI/HA/PEI hydrogels significantly decreased cell viability and gene expression levels compared to LLP-DOX alone. It was also observed that the viability of GBM spheroids decreased over time when interacting with CHI/HA/PEI/LLP-DOX hydrogels, accompanied by a reduction in total surface area and an increase in apoptotic tendencies. In this study, we hypothesized that creating a hybrid drug delivery system by encapsulating DOX-loaded LLPs within a CHI/HA/PEI hydrogel matrix could achieve sustained drug release, improve anticancer efficacy via localized treatment, and effectively mitigate GBM progression for 3D microtissues.
  • Placeholder
    Publication
    Ectodysplasin A2 receptor signaling in skeletal muscle pathophysiology
    (Elsevier Ltd, 2024) Department of Molecular Biology and Genetics; Özen, Sevgi Döndü; Kır, Serkan; Department of Molecular Biology and Genetics; College of Sciences; Graduate School of Sciences and Engineering
    Skeletal muscle is essential in generating mechanical force and regulating energy metabolism and body temperature. Pathologies associated with muscle tissue often lead to impaired physical activity and imbalanced metabolism. Recently, ectodysplasin A2 receptor (EDA2R) signaling has been shown to promote muscle loss and glucose intolerance. Upregulated EDA2R expression in muscle tissue was associated with aging, denervation, cancer cachexia, and muscular dystrophies. Here, we describe the roles of EDA2R signaling in muscle pathophysiology, including muscle atrophy, insulin resistance, and aging-related sarcopenia. We also discuss the EDA2R pathway, which involves EDA-A2 as the ligand and nuclear factor (NF)κB-inducing kinase (NIK) as a downstream mediator, and the therapeutic potential of targeting these proteins in the treatment of muscle wasting and metabolic dysfunction. © 2024 Elsevier Ltd