Browsing by Type "Conference proceeding"
Now showing 1 - 20 of 2104
- Results Per Page
- Sort Options
Publication Metadata only 10-NJ multipass-cavity femtosecond CR3+: LiCAF laser pumped by low-power single-mode diodes(Optical Society of America, 2009) Kärtner, Franz X.; Fujimoto, James G.; Demirbaş, Ümit; Department of Physics; Sennaroğlu, Alphan; Faculty Member; Department of Physics; College of Sciences; 23851We report on the generation of 9.9-nJ, 95-fs pulses at a repetition rate of 9.58 MHz from a multipass-cavity Cr3+:LiCAF laser pumped by single-mode diodes with a total absorbed pump power of only 540 mW.Publication Metadata only 16.4: the optics of an autostereoscopic multiview display(SID, 2010) Baghsiahi, Hadi; Selviah, David R.; Willman, Eero; Fernández, Anibal; Day, Sally E.; Surman, Phil A.; N/A; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Erden, Erdem; Chellappan, Kishore Velichappattu; Ürey, Hakan; Master Student; Researcher; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; N/A; 8579An autostereoscopic head-tracked back projection display that uses an RGB laser illumination source and a fast light engine is described. Images are horizontally scanned columns controlled by a spatial light modulator that directs two or more images in the directions of the apposite viewers 'eyes.Publication Open Access 2D hybrid meshes for direct simulation Monte Carlo solvers(Institute of Physics (IOP) Publishing, 2013) Şengil, Nevsan; Department of Mathematics; Şengil, Uluç; Master Student; Department of Mathematics; College of SciencesThe efficiency of the direct simulation Monte Carlo (DSMC) method decreases considerably if gas is not rarefied. In order to extend the application range of the DSMC method towards non-rarefied gas regimes, the computational efficiency of the DSMC method should be increased further. One of the most time consuming parts of the DSMC method is to determine which DSMC molecules are in close proximity. If this information is calculated quickly, the efficiency of the DSMC method will be increased. Although some meshless methods are proposed, mostly structured or non-structured meshes are used to obtain this information. The simplest DSMC solvers are limited with the structured meshes. In these types of solvers, molecule indexing according to the positions can be handled very fast using simple arithmetic operations. But structured meshes are geometry dependent. Complicated geometries require the use of unstructured meshes. In this case, DSMC molecules are traced cell-by-cell. Different cell-by-cell tracing techniques exist. But, these techniques require complicated trigonometric operations or search algorithms. Both techniques are computationally expensive. In this study, a hybrid mesh structure is proposed. Hybrid meshes are both less dependent on the geometry like unstructured meshes and computationally efficient like structured meshes.Publication Metadata only 2D scanning MEMS stage integrated with microlens arrays for high-resolution beam steering(IEEE, 2009) Department of Electrical and Electronics Engineering; N/A; Department of Electrical and Electronics Engineering; N/A; N/A; N/A; Ürey, Hakan; Gökçe, Sertan Kutal; Holmstrom, Sven; Arslan, Aslıhan; Ataman, Çağlar; Seren, Hüseyin Rahmi; Faculty Member; Master Student; Researcher; Master Student; PhD Student; Master Student; Other; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; College of Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; N/A; 8579; N/A; N/A; N/A; N/A; N/A; N/AA novel MEMS stage using one set of comb fingers, capable of 2-axis motion is designed and developed. With an integrated 1.1mm square microlens-array it deflects 40um in-plane at 60V and 95um out-of-plane at 100V.Publication Metadata only 300 GHz broadband transceiver design for low-THz band wireless communications in indoor internet of things(Ieee, 2017) N/A; Department of Electrical and Electronics Engineering; N/A; Department of Electrical and Electronics Engineering; Khalid, Nabil; Abbasi, Naveed Ahmed; Akan, Özgür Barış; Researcher; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 6647This paper presents the architectural design of a 300 GHz transceiver system that can be used to explore the high speed communication opportunities offered by the Terahertz (THz) band for advanced applications of Internet-of-Things (IoT). We use low cost industry ready components to prepare a fully customizable THz band communication system that provides a bandwidth of 20 GHz that is easily extendable up to 40 GHz. Component parameters arc carefully observed and used in simulations to predict the system performance while the compatibility of different components is ensured to produce a reliable design. Our results show that the receiver provides a conversion gain of 51 dB with a noise figure (NE) of 9.56 dB to achieve a data rate of 90.31 Gbps at an operation range of 2 meters, which is suitable for high speed indoor IoT nodes. The flexible design of the transceiver provides groundwork for further research efforts in 5G IoT applications and pushing boundaries of throughputs to the order of terabits per second (Tbps).Publication Metadata only 3D articulated shape segmentation using motion information(Institute of Electrical and Electronics Engineers (IEEE), 2010) Department of Computer Engineering; N/A; Yemez, Yücel; Kalafatlar, Emre; Faculty Member; Master Student; Department of Computer Engineering; College of Engineering; Graduate School of Sciences and Engineering; 107907; N/AWe present a method for segmentation of articulated 3D shapes by incorporating the motion information obtained from time-varying models. We assume that the articulated shape is given in the form of a mesh sequence with fixed connectivity so that the inter-frame vertex correspondences, hence the vertex movements, are known a priori. We use different postures of an articulated shape in multiple frames to constitute an affinity matrix which encodes both temporal and spatial similarities between surface points. The shape is then decomposed into segments in spectral domain based on the affinity matrix using a standard K-means clustering algorithm. The performance of the proposed segmentation method is demonstrated on the mesh sequence of a human actor.Publication Metadata only 3D display dependent quality evaluation and rate allocation using scalable video coding(Ieee, 2009) N/A; N/A; Department of Electrical and Electronics Engineering; Saygılı, Görkem; Gürler, Cihat Göktuğ; Tekalp, Ahmet Murat; Master Student; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 26207It is well known that the human visual system can perceive high frequency content in 3D, even if that information is present in only one of the views. Then, the best 3D perception quality may be achieved by allocating the rates of the reference (right) and auxiliary (left) views asymmetrically. However the question of whether the rate reduction for the auxiliary view should be achieved by spatial resolution reduction (coding a downsampled version of the video followed by upsampling after decoding) or quality (QP) reduction is an open issue. This paper shows that which approach should be preferred depends on the 3D display technology used at the receiver. Subjective tests indicate that users prefer lower quality (larger QP) coding of the auxiliary view over lower resolution coding if a "full spatial resolution" 3D display technology (such as polarized projection) is employed. On the other hand, users prefer lower resolution coding of the auxiliary view over lower quality coding if a "reduced spatial resolution" 3D display technology (such as parallax barrier - autostereoscopic) is used. Therefore, we conclude that for 3D IPTV services, while receiving full quality/resolution reference view, users should subscribe to differently scaled versions of the auxiliary view depending on their 3D display technology. We also propose an objective 3D video quality measure that takes the 3D display technology into account.Publication Metadata only 3D face recognition(Institute of Electrical and Electronics Engineers (IEEE), 2006) Dutaǧaci, H.; Sankur, B.; Department of Computer Engineering; Yemez, Yücel; Faculty Member; Department of Computer Engineering; College of Engineering; 107907In this paper, we compare face recognition performances of various features applied on registered 3D scans of faces. The features we compare are DFT or DCT- based features, ICA-based features and NNMF-based features. We apply the feature extraction techniques to three different representations of registered faces: 3D point clouds, 2D depth images and 3D voxel representations. We also consider block-based DFT or DCT-based local features on 2D depth images and their fusion schemes. Experiments using different combinations of representation types and feature vectors are conducted on the 3D-RMA dataset. / Bu bildiride, kayıtlı 3B yüz taramalarında uygulanan çeşitli özelliklerin yüz tanıma performanslarını karşılaştırıyoruz. Karşılaştırdığımız özellikler, DFT veya DCT tabanlı özellikler, ICA tabanlı özellikler ve NNMF tabanlı özelliklerdir. Öznitelik çıkarma tekniklerini kayıtlı yüzlerin üç farklı temsiline uyguluyoruz: 3B nokta bulutları, 2B derinlik görüntüleri ve 3B voksel temsilleri. Ayrıca, 2D derinlik görüntüleri ve bunların füzyon şemaları üzerindeki blok tabanlı DFT veya DCT tabanlı yerel özellikleri de dikkate alıyoruz. 3D-RMA veri seti üzerinde farklı temsil türleri ve özellik vektörleri kombinasyonları kullanılarak deneyler yapılmıştır.Publication Open Access 3D face recognition by projection based methods(Society of Photo-optical Instrumentation Engineers (SPIE), 2006) Dutaǧaci, Helin; Sankur, Bülent; Department of Computer Engineering; Yemez, Yücel; Faculty Member; Department of Computer Engineering; College of EngineeringIn this paper, we investigate recognition performances of various projection-based features applied on registered 3D scans of faces. Some features are data driven, such as ICA-based features or NNMF-based features. Other features are obtained using DFT or DCT-based schemes. We apply the feature extraction techniques to three different representations of registered faces, namely, 3D point clouds, 2D depth images and 3D voxel. We consider both global and local features. Global features are extracted from the whole face data, whereas local features are computed over the blocks partitioned from 2D depth images. The block-based local features are fused both at feature level and at decision level. The resulting feature vectors are matched using Linear Discriminant Analysis. Experiments using different combinations of representation types and feature vectors are conducted on the 3D-RMA dataset.Publication Metadata only 3D isometric shape correspondence(IEEE, 2010) Department of Computer Engineering; Yemez, Yücel; Sahillioğlu, Yusuf; Faculty Member; PhD Student; Department of Computer Engineering; College of Engineering; Graduate School of Sciences and Engineering; 107907; 215195We address the problem of correspondence between 3D isometric shapes. We present an automatic method that finds the optimal correspondence between two given (nearly) isometric shapes by minimizing the amount of deviation from isometry. We optimize the isometry error in two steps. In the first step, the 3D points uniformly sampled from the shape surfaces are transformed into spectral domain based on geodesic affinity, where the isometry errors are minimized in polynomial time by complete bipartite graph matching. The second step of optimization, which is well-initialized by the resulting correspondence of the first step, explicitly minimizes the isometry cost via an iterative greedy algorithm in the original 3D Euclidean space. Our method is put to test using (nearly) isometric pairs of shapes and its performance is measured via ground-truth correspondence information when available.Publication Metadata only 3D object matching via multivariate shape distributions(Institute of Electrical and Electronics Engineers (IEEE), 2005) Akgül, C.B.; Sankur, B.; Schmitt, F.; Department of Computer Engineering; Yemez, Yücel; Faculty Member; Department of Computer Engineering; College of Engineering; 1079073B nesne eşleştirme literatüründe, problemi şekil dağılımlarının karşılaştırılmasına indirgeyen yöntemler bulunmaktadır. Şekil dağılımı, 3B nesne yüzeyi üzerinde hesaplanan bir işlevin değerlerinin olasılık dağılımı olarak tanımlanır. Bu çalışmada varolan yöntemi, birden çok işlevin getirdiği şekil bilgisinden aynı anda yararlanacak şekilde genişletiyoruz. Çokboyutlu şekil dağılımları adını verdiğimiz bu 3B nesne betimleyicilerini, örnek bir 3B nesne veri tabanındaki nesneler için parametrik olmayan yaklaşımlarla kestiriyor, karşılaştırmaları alternatif metrikler yoluyla yapıyoruz. Elde edilen kesinlik-geri getirme eğrileri çokboyutlu şekil dağılımlarının karşılaştırılmasının yeni bir 3B nesne eşleştirme paradigması olabileceğini göstermektedir.Publication Metadata only 3D progressive compression with octree particles(Akademische Verlagsgesellsch Aka Gmbh, 2002) Schmitt, Francis; Department of Computer Engineering; N/A; Yemez, Yücel; Faculty Member; Department of Computer Engineering; College of Engineering; N/A; 107907; N/AThis paper improves the storage efficiency of the progressive particle-based modeling scheme presented in [14, 15] by using entropy coding techniques. This scheme encodes the surface geometry and attributes in terms of appropriately ordered oc-tree particles, which can then progressively be decoded and rendered by the-viewer by means of a fast direct triangulation technique. With the introduced entropy coding technique, the bitload of the multi-level representation for geometry encoding reduces to 9-14 bits per particle (or 4.5-7 bits per triangle) for 12-bit quantized geometry.Publication Metadata only 3D shape correspondence by isometry-driven greedy optimization(IEEE Computer Soc, 2010) N/A; Department of Computer Engineering; Sahillioğlu, Yusuf; Yemez, Yücel; PhD Student; Faculty Member; Department of Computer Engineering; Graduate School of Sciences and Engineering; College of Engineering; 215195; 107907We present an automatic method that establishes 3D correspondence between isometric shapes. Our goal is to find an optimal correspondence between two given (nearly) isometric shapes, that minimizes the amount of deviation from isometry. We cast the problem as a complete surface correspondence problem. Our method first divides the given shapes to be matched into surface patches of equal area and then seeks for a mapping between the patch centers which we refer to as base vertices. Hence the correspondence is established in a fast and robust manner at a relatively coarse level as imposed by the patch radius. We optimize the isometry cost in two steps. in the first step, the base vertices are transformed into spectral domain based on geodesic affinity, where the isometry errors are minimized in polynomial time by complete bipartite graph matching. the resulting correspondence serves as a good initialization for the second step of optimization in which we explicitly minimize the isometry cost via an iterative greedy algorithm in the original 3D Euclidean space. We demonstrate the performance of our method on various isometric (or nearly isometric) pairs of shapes for some of which the ground-truth correspondence is available.Publication Metadata only 3D Shape recovery and tracking from multi-camera video sequences via surface deformation(IEEE, 2006) Skala, V.; N/A; Department of Computer Engineering; Sahillioğlu, Yusuf; Yemez, Yücel; PhD Student; Faculty Member; Department of Computer Engineering; Graduate School of Sciences and Engineering; College of Engineering; 215195; 107907This paper addresses 3D reconstruction and modeling of time-varying real objects using multicamera video. The work consists of two phases. In the first phase, the initial shape of the object is recovered from its silhouettes using a surface deformation model. The same deformation model is also employed in the second phase to track the recovered initial shape through the time-varying silhouette information by surface evolution. The surface deformation/evolution model allows us to construct a spatially and temporally smooth surface mesh representation having fixed connectivity. This eventually leads to an overall space-time representation that preserves the semantics of the underlying motion and that is much more efficient to process, to visualize, to store and to transmit.Publication Metadata only 3D shape recovery and tracking from multi-camera video sequences via surface deformation(Institute of Electrical and Electronics Engineers (IEEE), 2006) Skala, V.; N/A; Department of Computer Engineering; Sahillioğlu, Yusuf; Yemez, Yücel; PhD Student; Faculty Member; Department of Computer Engineering; Graduate School of Sciences and Engineering; College of Engineering; 215195; 107907This paper addresses 3D reconstruction and modeling of time-varying real objects using multicamera video. The work consists of two phases. In the first phase, the initial shape of the object is recovered from its silhouettes using a surface deformation model. The same deformation model is also employed in the second phase to track the recovered initial shape through the time-varying silhouette information by surface evolution. The surface deformation/evolution model allows us to construct a spatially and temporally smooth surface mesh representation having fixed connectivity. This eventually leads to an overall space-time representation that preserves the semantics of the underlying motion and that is much more efficient to process, to visualize, to store and to transmit. / Bu makale, çok kameralı video kullanarak zamanla değişen gerçek nesnelerin 3B yeniden yapılandırılmasını ve modellenmesini ele almaktadır. Çalışma iki aşamadan oluşmaktadır. İlk aşamada, nesnenin ilk şekli, bir yüzey deformasyon modeli kullanılarak silüetlerinden kurtarılır. Aynı deformasyon modeli, ikinci aşamada, yüzey evrimi yoluyla zamanla değişen siluet bilgisi yoluyla geri kazanılan ilk şekli izlemek için de kullanılır. Yüzey deformasyonu/evrimi modeli, sabit bağlantıya sahip uzamsal ve zamansal olarak pürüzsüz bir yüzey ağ temsili oluşturmamıza izin verir. Bu, sonunda, altta yatan hareketin anlamını koruyan ve işlemesi, görselleştirmesi, depolaması ve iletmesi çok daha verimli olan genel bir uzay-zaman temsiline yol açar.Publication Metadata only 3DTV and 3D video communications(Assoc Computing Machinery, 2010) Department of Electrical and Electronics Engineering; Tekalp, Ahmet Murat; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 26207With wider availability of low cost multi-view cameras, 3D displays, and broadband communication options, 3D media is destined to move from the movie theater to home and mobile platforms. In the near term, popular 3D media will most likely be in the form of stereoscopic video with associated spatial audio. Recent trials indicate that consumers are willing to watch stereoscopic 3D media on their TVs, laptops, and mobile phones. While it is possible to broadcast 3D stereoscopic media (two-views) over digital TV platforms today, streaming over IP will provide a more flexible approach for distribution of 3D media to users with different connection bandwidths and different 3D displays. In the intermediate term, free-view 3D video and 3DTV with multi-view capture are next steps in the evolution of 3D media technology. Recent free-view 3D auto-stereoscopic displays can display multi-view video, ranging from 5 to 200 views. Transmission of multi-view 3D media, via broadcast or on-demand, to end users with varying 3D display terminals and bandwidths is one of the biggest challenges to realize the vision of bringing 3D media experience to the home and mobile devices. This requires flexible rate-scalable, resolution-scalable, view-scalable, view-selective, and packet-loss resilient transport methods. In this talk, first I will briefly review the state of the art in 3D video formats, coding methods, IP streaming protocols and streaming architectures. We will then take a look at 3D video transport options. There are two main platforms for 3D broadcasting: standard digital television (DTV) platforms and the IP platform. I will summarize the approach of European project DIOMEDES which is developing novel methods for adaptive streaming of multi-view video over a combination of DVB and IP platforms. I will also summarize additional challenges associated with real-time interactive 3D video communications for applications such as 3D telepresence. Finally, open research challenges for the long term vision of haptic video and holographic 3D video will be presented.Publication Metadata only 48.4: Beam forming for a laser based auto-stereoscopic multi-viewer display(Blackwell Publishing Ltd, 2011) Baghsiahi, Hadi; Selviah, David R.; Willman, Eero; Fernández, Anibal; Day, Sally E.; Surman, Phil A.; N/A; Department of Electrical and Electronics Engineering; N/A; N/A; N/A; Department of Electrical and Electronics Engineering; Akşit, Kaan; Ölçer, Selim; Mostafazadeh, Aref; Erden, Erdem; Chellappan, Kishore Velichappattu; Ürey, Hakan; PhD Student; Other; N/A; Other; N/A; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; N/A; College of Engineering; N/A; N/A; N/A; N/A; N/A; 8579An auto-stereoscopic back projection display using a RGB multiemitter laser illumination source and micro-optics to provide a wider view is described. The laser optical properties and the speckle due to the optical system configuration and its diffusers are characterised. © 2011 SID.Publication Metadata only 80-NJ multipass-cavity chirped-pulse Cr4+: forsterite laser(Optical Society of America, 2010) Fujimoto, James G.; Department of Physics; Sennaroğlu, Alphan; Çankaya, Hüseyin; Faculty Member; Researcher; Department of Physics; College of Sciences; Graduate School of Sciences and Engineering; 23851; N/ABy using 8.5 W of incident pump power, we obtained 80-nJ, 5.5-ps pulses at 1260 nm with a spectral width of 17 nm from a multipass-cavity, chirped-pulse Cr4+:forsterite laser operated at 4.9-MHz repetition rate. © 2010 Optical Society of America.Publication Open Access A 2D MEMS stage for optical applications(Society of Photo-optical Instrumentation Engineers (SPIE), 2006) Ataman, Çağlar; Petremand, Yves; Noell, Wilfried; Epitaux, Marc; de Rooij, Nico F.; Department of Electrical and Electronics Engineering; Ürey, Hakan; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 8579A 2D MEMS platform for a microlens scanner application is reported. The platform is fabricated on an SOI wafer with 50/μm thick device layer. Entire device is defined with a single etching step on the same layer. Through four S-shaped beams, the device is capable of producing nonlinear 2D motion from linear ID translation of two pairs of comb actuator sets. The device has a clear aperture of 2mm by 2mm, which is hallowed from the backside for micro-optics assembly. In this paper, a numerical device model and its validation via experimental characterization results are presented. Integration of the micro-optical components with the stage is also discussed. Additionally, a new driving scheme to minimize the settling time of the device in DC operation is explored.Publication Metadata only A binarization strategy for modelling mixed data in multigroup classification(Institute of Electrical and Electronics Engineers (IEEE), 2013) Masmoudi, Youssef; Chabchoub, Habib; Department of Industrial Engineering; Türkay, Metin; Faculty Member; Department of Industrial Engineering; College of Engineering; 24956This paper presents a binarization pre-processing strategy for mixed datasets. We propose that the use of binary attributes for representing nominal and integer data is beneficial for classification accuracy. We also describe a procedure to convert integer and nominal data into binary attributes. Expectation-Maximization (EM) clustering algorithms was applied to classify the values of the attributes with a wide range to use a small number of binary attributes. Once the data set is pre-processed, we use the Support Vector Machine (LibSVM) for classification. The proposed method was tested on datasets from the literature. We demonstrate the improved accuracy and efficiency of presented binarization strategy for modelling mixed and complex data in comparison to the classification of the original dataset, nominal dataset and binary dataset.