Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 3251
  • Placeholder
    Publication
    1,3-bis(gamma-aminopropyl)tetramethyldisiloxane modified epoxy resins: curing and characterization
    (Elsevier, 1998) Department of Chemistry; Department of Chemistry; Yılgör, Emel; Yılgör, İskender; Researcher; Faculty Member; Department of Chemistry; College of Sciences; College of Sciences; 40527; 24181
    Incorporation of siloxane oligomers with reactive organofunctional terminal groups, such as amine, epoxy and carboxy, into the structure of epoxy networks, provides improvements in the fracture toughness, water absorption and surface properties of the resultant systems. 1,3-bis(gamma-aminopropyl) tetramethyldisiloxane (DSX) was used as a model curing agent and modifier in bis(4-aminocyclohexyl)methane (PACM-20) cured diglycidyl ether of bisphenol-A (DGEBA) based epoxy resins. Curing reactions followed by differential scanning calorimetry indicated faster reaction rates between DSX and DGEBA as compared with PACM-20 and DGEBA. Mechanical characterization of the modified products showed improvements in tensile and impact strengths as expected. Glass transition temperatures of these materials showed a decrease with an increase in DSX content.
  • Placeholder
    Publication
    10-NJ multipass-cavity femtosecond CR3+: LiCAF laser pumped by low-power single-mode diodes
    (Optical Society of America, 2009) Kärtner, Franz X.; Fujimoto, James G.; Demirbaş, Ümit; Department of Physics; Sennaroğlu, Alphan; Faculty Member; Department of Physics; College of Sciences; 23851
    We report on the generation of 9.9-nJ, 95-fs pulses at a repetition rate of 9.58 MHz from a multipass-cavity Cr3+:LiCAF laser pumped by single-mode diodes with a total absorbed pump power of only 540 mW.
  • Placeholder
    Publication
    2d -> 3d polycatenated and 3d -> 3d interpenetrated metal-organic frameworks constructed from thiophene-2,5-dicarboxylate and rigid bis(imidazole) ligands
    (Elsevier, 2014) Erer, Hakan; Yesilel, Okan Zafer; Arici, Mursel; Buyukgungor, Orhan; Department of Chemical and Biological Engineering; Keskin, Seda; Faculty Member; Department of Chemical and Biological Engineering; College of Engineering; 40548
    Hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2, 5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H(2)tdc) in the presence of Zn(II) and Cd(II) salts in H2O produced three new metal-organic frameworks, namely, [Zn(mu-tdc)(H2O) (mu-dib)](n) (1), [Cd(mu-tdc)(H2O)(mu-dib)(n) (2), and {[Cd-2(mu(3)-tdc)(2)(mu-dimb)(2)] center dot (H2O)}(n) (3). These MOFs were characterized by FT-IR spectroscopy, elemental, thermal (TG, DTA, DTG and DSC), and single-crystal X-ray diffraction analyses. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D -> 3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6(6). Molecular simulations were used to assess the potentials of the complexes for H-2 storage application. Moreover, these coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature.
  • Thumbnail Image
    PublicationOpen Access
    2D hybrid meshes for direct simulation Monte Carlo solvers
    (Institute of Physics (IOP) Publishing, 2013) Şengil, Nevsan; Department of Mathematics; Şengil, Uluç; Master Student; Department of Mathematics; College of Sciences
    The efficiency of the direct simulation Monte Carlo (DSMC) method decreases considerably if gas is not rarefied. In order to extend the application range of the DSMC method towards non-rarefied gas regimes, the computational efficiency of the DSMC method should be increased further. One of the most time consuming parts of the DSMC method is to determine which DSMC molecules are in close proximity. If this information is calculated quickly, the efficiency of the DSMC method will be increased. Although some meshless methods are proposed, mostly structured or non-structured meshes are used to obtain this information. The simplest DSMC solvers are limited with the structured meshes. In these types of solvers, molecule indexing according to the positions can be handled very fast using simple arithmetic operations. But structured meshes are geometry dependent. Complicated geometries require the use of unstructured meshes. In this case, DSMC molecules are traced cell-by-cell. Different cell-by-cell tracing techniques exist. But, these techniques require complicated trigonometric operations or search algorithms. Both techniques are computationally expensive. In this study, a hybrid mesh structure is proposed. Hybrid meshes are both less dependent on the geometry like unstructured meshes and computationally efficient like structured meshes.
  • Placeholder
    Publication
    3D face recognition
    (Institute of Electrical and Electronics Engineers (IEEE), 2006) Dutaǧaci, H.; Sankur, B.; Department of Computer Engineering; Yemez, Yücel; Faculty Member; Department of Computer Engineering; College of Engineering; 107907
    In this paper, we compare face recognition performances of various features applied on registered 3D scans of faces. The features we compare are DFT or DCT- based features, ICA-based features and NNMF-based features. We apply the feature extraction techniques to three different representations of registered faces: 3D point clouds, 2D depth images and 3D voxel representations. We also consider block-based DFT or DCT-based local features on 2D depth images and their fusion schemes. Experiments using different combinations of representation types and feature vectors are conducted on the 3D-RMA dataset. / Bu bildiride, kayıtlı 3B yüz taramalarında uygulanan çeşitli özelliklerin yüz tanıma performanslarını karşılaştırıyoruz. Karşılaştırdığımız özellikler, DFT veya DCT tabanlı özellikler, ICA tabanlı özellikler ve NNMF tabanlı özelliklerdir. Öznitelik çıkarma tekniklerini kayıtlı yüzlerin üç farklı temsiline uyguluyoruz: 3B nokta bulutları, 2B derinlik görüntüleri ve 3B voksel temsilleri. Ayrıca, 2D derinlik görüntüleri ve bunların füzyon şemaları üzerindeki blok tabanlı DFT veya DCT tabanlı yerel özellikleri de dikkate alıyoruz. 3D-RMA veri seti üzerinde farklı temsil türleri ve özellik vektörleri kombinasyonları kullanılarak deneyler yapılmıştır.
  • Placeholder
    Publication
    3D model retrieval using probability density-based shape descriptors
    (IEEE Computer Society, 2009) Akgul, Ceyhun Burak; Sankur, Buelent; Schmitt, Francis; Department of Computer Engineering; Yemez, Yücel; Faculty Member; Department of Computer Engineering; College of Engineering; 107907
    We address content-based retrieval of complete 3D object models by a probabilistic generative description of local shape properties. The proposed shape description framework characterizes a 3D object with sampled multivariate probability density functions of its local surface features. This density-based descriptor can be efficiently computed via kernel density estimation (KDE) coupled with fast Gauss transform. The nonparametric KDE technique allows reliable characterization of a diverse set of shapes and yields descriptors which remain relatively insensitive to small shape perturbations and mesh resolution. Density-based characterization also induces a permutation property which can be used to guarantee invariance at the shape matching stage. As proven by extensive retrieval experiments on several 3D databases, our framework provides state-of-the-art discrimination over a broad and heterogeneous set of shape categories.
  • Placeholder
    Publication
    3D object matching via multivariate shape distributions
    (Institute of Electrical and Electronics Engineers (IEEE), 2005) Akgül, C.B.; Sankur, B.; Schmitt, F.; Department of Computer Engineering; Yemez, Yücel; Faculty Member; Department of Computer Engineering; College of Engineering; 107907
    3B nesne eşleştirme literatüründe, problemi şekil dağılımlarının karşılaştırılmasına indirgeyen yöntemler bulunmaktadır. Şekil dağılımı, 3B nesne yüzeyi üzerinde hesaplanan bir işlevin değerlerinin olasılık dağılımı olarak tanımlanır. Bu çalışmada varolan yöntemi, birden çok işlevin getirdiği şekil bilgisinden aynı anda yararlanacak şekilde genişletiyoruz. Çokboyutlu şekil dağılımları adını verdiğimiz bu 3B nesne betimleyicilerini, örnek bir 3B nesne veri tabanındaki nesneler için parametrik olmayan yaklaşımlarla kestiriyor, karşılaştırmaları alternatif metrikler yoluyla yapıyoruz. Elde edilen kesinlik-geri getirme eğrileri çokboyutlu şekil dağılımlarının karşılaştırılmasının yeni bir 3B nesne eşleştirme paradigması olabileceğini göstermektedir.
  • Placeholder
    Publication
    3D reconstruction of real objects with high resolution shape and texture
    (Elsevier, 2004) Schmitt, F; Department of Computer Engineering; Yemez, Yücel; Faculty Member; Department of Computer Engineering; College of Engineering; 107907
    We present a robust and accurate system for 3D reconstruction of real objects with high resolution shape and texture. Our reconstruction method is passive, the only information needed being 2D images obtained with a calibrated camera from different view angles as the object rotates on a turntable. The triangle surface model is obtained by a scheme combining octree construction and marching cubes algorithm, which is adapted to the shape from silhouette problem. We develop a texture mapping strategy based on surface particles to adequately address photography related problems such as inhomogeneous lighting, highlights and occlusion. Reconstruction results are included to demonstrate the attained quality.
  • Placeholder
    Publication
    3D shape recovery and tracking from multi-camera video sequences via surface deformation
    (Institute of Electrical and Electronics Engineers (IEEE), 2006) Skala, V.; N/A; Department of Computer Engineering; Sahillioğlu, Yusuf; Yemez, Yücel; PhD Student; Faculty Member; Department of Computer Engineering; Graduate School of Sciences and Engineering; College of Engineering; 215195; 107907
    This paper addresses 3D reconstruction and modeling of time-varying real objects using multicamera video. The work consists of two phases. In the first phase, the initial shape of the object is recovered from its silhouettes using a surface deformation model. The same deformation model is also employed in the second phase to track the recovered initial shape through the time-varying silhouette information by surface evolution. The surface deformation/evolution model allows us to construct a spatially and temporally smooth surface mesh representation having fixed connectivity. This eventually leads to an overall space-time representation that preserves the semantics of the underlying motion and that is much more efficient to process, to visualize, to store and to transmit. / Bu makale, çok kameralı video kullanarak zamanla değişen gerçek nesnelerin 3B yeniden yapılandırılmasını ve modellenmesini ele almaktadır. Çalışma iki aşamadan oluşmaktadır. İlk aşamada, nesnenin ilk şekli, bir yüzey deformasyon modeli kullanılarak silüetlerinden kurtarılır. Aynı deformasyon modeli, ikinci aşamada, yüzey evrimi yoluyla zamanla değişen siluet bilgisi yoluyla geri kazanılan ilk şekli izlemek için de kullanılır. Yüzey deformasyonu/evrimi modeli, sabit bağlantıya sahip uzamsal ve zamansal olarak pürüzsüz bir yüzey ağ temsili oluşturmamıza izin verir. Bu, sonunda, altta yatan hareketin anlamını koruyan ve işlemesi, görselleştirmesi, depolaması ve iletmesi çok daha verimli olan genel bir uzay-zaman temsiline yol açar.
  • Placeholder
    Publication
    3D surface topography analysis in 5-axis ball-end milling
    (Elsevier, 2017) N/A; Department of Mechanical Engineering; Khavidaki, Sayed Ehsan Layegh; Lazoğlu, İsmail; PHD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 179391
    This article presents a new analytical model to predict the topography and roughness of the machined surface in 5-axis ball-end milling operation for the first time. The model is able to predict the surface topography and profile roughness parameters such as 3D average roughness (Sa) and 3D root mean square roughness (Sq) by considering the process parameters such as the feedrate, number of flutes, step over and depth of cut as well as the effects of eccentricity and tool runout in 5-axis ball-end milling. This model allows to simulate the effects of the lead and tilt angles on the machined surface quality in the virtual environment prior to the costly 5-axis machining operations. The effectiveness of the introduced surface topography prediction model is validated experimentally by conducting 5-axis ball-end milling tests in various cutting conditions. (C) 2017 Published by Elsevier Ltd on behalf of CIRP.